
Use of the PGAS model for high performance
computing in Beowulf Clusters

Jorge D’Eĺıa?, Lisandro Dalcin, Sof́ıa Sarraf, Ezequiel López,
Laura Battaglia, Gustavo Ŕıos Rodŕıguez, and Victorio Sonzogni

Centro Internacional de Métodos Computacionales en Ingenieŕıa (CIMEC)
Instituto de Desarrollo Tecnológico para la Industria Qúımica (INTEC)

Universidad Nacional del Litoral - CONICET Güemes 3450, 3000-Santa Fe, Argentina
{jdelia,dalcin,sonzogni}@intec.unl.edu.ar,

{sssarraf,ezequiel.jose.lopez}@gmail.com,

lbattaglia@santafe-conicet.gob.ar,

gusadrr@yahoo.com.ar

http://www.cimec.org.ar

Abstract. The Partitioned Global Address Space (PGAS) is a paral-
lel programming model that has been developed for distributed memory
computers. Furthermore, it can be used in High Performance Computing
(HPC) on Beowulf clusters oriented to scientific and engineering applica-
tions through computational mechanics. As it is known, the PGAS model
is the basis for, among others, some multi-paradigm programming lan-
guages such as the UPC (Unified Parallel C) and the Coarray Fortran
(CAF or Fortran 2008), as well as the library Global Arrays (GA). All
these resources are extensions to provide one-side communication. This
work summarizes some of the activities carried out in one of the clus-
ters available in CIMEC, as well as some ideas for a Message Passing
Interface (MPI) implementation of coarrays on a fortran compiler.

Keywords: Partitioned Global Address Space, Unified Parallel C, Coar-
ray Fortran, High Performance Computing, computational mechanics

1 Introduction

The Partitioned Global Address Space (PGAS) [1, 2] is a programming model for
parallel computing on distributed memory computers, as well as on “traditional”
Beowulf clusters.

1.1 PGAS memory model

The PGAS memory model assumes a global address space along with an ex-
plicitly Single Program and Multiple Data (SMPD) programming model, and it

? Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET, Argentina):
grant PIP 112-20111-00978, Universidad Nacional del Litoral (UNL, Argentina):
grant CAI+D 2009–III–4–2, Agencia Nacional de Promoción Cient́ıfica y Tecnológica
(ANPCyT, Argentina): grants PICT 2492–10, PICT 1141–07, PICT-PRH 2009-0147,
EU-IRSES, grant PIRSES-GA-2009-246977

HPCLatAm 2013, pp. 210-215 (short paper)
Session: Prospective and Ongoing Projects

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

can seen as share memory model in a distributed memory computer in which
the locality of the cache data is taken into account. In this model, a distintion
between local and remote memory references is made to take advantage of the
local data, with the ultimate goal of increasing the performance in distributed
memory computers. There are SPMD processes that share a part of their address
space, while a part of the share space is local to each process. Data structures
are allocated either globally or privately, where the first ones are distributed
across the adress space. Remote global data are accesible to any process with
simple assignament or dereference operations, while the compiler and runtimes
convert these operations into messages among processes on a distribute mem-
ory computer. Although programs based in this model work mainly with their
local data and requering communication through global data structures only,
most of them also provide Application Programming Interfaces (APIs) for bulk
communication and syncronization.

1.2 PGAS runtimes and libraries

Three of the PGAS runtimes and libraries are the following:

1. Global-Address Space Networking (GASNet) runtimes [3]: it is a language-
indpendent and low-level networking layer that provides network-indpendent
primitives for one-side communication, and it used as tool for runtime li-
braries. Inside GASNet there are two layers, the lower one is a general inter-
face implemented directly on the top of several network architecture, while
the upper layer provides remote memory access as well as collective opera-
tions in a high level mode.

2. Aggregate Remote Memory Copy Interface (ARMCI) runtimes [4]: it is a
library that allows remote memory copy functions, one-sided put and get,
as well as mutual exclusive operations, handling regular and irregular dis-
tributed data. It has compatibility with MPI for hybrid shared-distributed
memory computers, and it has blocking and noblocking APIs, where the last
ones can be used in some cases to overlap computations and communications.
It is worth to say that the official site website is out-to-date, although there
are plans to release the 1.5 version, according to its developers, as well as
there is the completly rewritten implementation ARMC-MPI [5].

3. Global Arrays (GA) library [6]: it provides a shared memory style program-
ming environment in distributed array data structures. From the user per-
spective, a global array is used as if it is stored in the shared memory. The
primary target architectures are the massively-parallel distributed-memory
and scalable shared-memory systems. It divides shared data structures into
local and remote portions, where the local portion of the shared memory is
assumed to be faster to access, while the remote portion is considered slower
to access. Also, it allows to combine shared-memory and message-passing
styles of programming in a same program, where it inherits the execution en-
vironment from a MPI library that started the parallel program (see Global
Arrays Manual).

HPCLatAm 2013 - Page 211

1.3 PGAS programming languages

Two programming languages that support the PGAS model are the following:

1. Unified Parallel C (UPC) [7]: it is an extension of the C programming lan-
guage for HPC on distributed memory computers, combining the shared
memory and the control over the data layout of the message-passing models,
using a SMPD computation pattern. There is a single shared and partitioned
address space, where the variables my be directly read and written by any
processor, although each variable is physically associated with a single pro-
cessor, while the amount of parallelis is fixed at the program startup.

2. Coarray Fortran [8] (or Fortran 2008 [9]): the coarray model is included in the
lastest Fortran 2008 standard as a part of the language definition in order to
handling the work and data distribution in a parallel program. A SMPD pro-
gramming model is emplyed for the work distribution, where a single prgram
is replicated a fixed number of times. Each replication is called an imagen,
and it has its own set of data, and executes mostly asynchronously, while a
syncronization can be requested thorough specific statements. The coarrays
allow to define the data distribution among the memory images, they are
like ordinary variables although they have their indices in square brackets
for memory access across the images, i.e. reference without square brackets
involve local data, while a square bracket reference imply a communication
across the images.

2 Some software based on the PGAS model

The CIMEC clusters are based on the free software available for Linux Operative
Systems (OS), particularly Fedora distributions, where the following runtimes,
libraries and programming languages based on the PGAS model were tested:

– PGAS runtimes and libraries:
• Global-Address Space Networking (GASNet) runtimes [3];
• Aggregate Remote Memory Copy Interface (ARMCI) runtimes [4];
• Global Arrays (GA) library [6];
• UPCBLAS library (for parallel matrix computations in UPC) [10].

– PGAS programming languages:
• Unified Parallel C (UPC) [7]: the Berkeley UPC [11] and GUPC [12]

compilers;
• Coarray Fortran [8] (or Fortran 2008 [9]): the OpenUH [13] and G95

[14] compilers. The first one without restrictions, while G95 only until 4
computer nodes.

The Berkeley UPC and Open-UH compilers and GA were built on the CIMEC
Coyote cluster [15], and they are currently in an experimental stage. These were
built over the GASNet and ARMCI layers, in addition to the ubiquitous MPI
layer, through the OpenMPI [16] distribution. The currently OS is the Fedora
17 distribution.

HPCLatAm 2013 - Page 212

3 A MPI based library for the coarray model

Nowdays, the coarray model is included in the lastest Fortran 2008 standard.
However, since several fortran compilers are built on the basis of the C/C++
ones, e.g. the GNU–GFortran [17] and Rose [18] compilers, there is not a native
way to add the coarray model. One option is to build a MPI based library for
supporting the coarray model. In this case, it should be ensured that the final
library is as neutral as possible regards to an end user. However, due to the fact
that the MPI binaries are not yet compatibles among the available MPI imple-
mentations, e.g. OpenMPI [16] or MPICH [19], this issue should be overcomed.
Among other possibilities, the following alternatives can be considered, from the
simplest case to more elaborated choices:

1. A static library libcaf mpi.a which uses a specific MPI implementation when
the library is built (e.g. OpenMPI or MPICH). However, it only works with
the MPI distribution available when the library is built;

2. A dynamic library libcaf mpi.so that uses a specific MPI implementation
(e.g. OpenMPI or MPICH) when the library is built. However, again, it only
works with the MPI implementation available when the library is built. From
an usability point of view, this option is not very different than the previous
one;

3. A symbolic link libcaf mpi.so that points to dynamics libraries libcaf mpich.so
or libcaf openmpi.so. The sysadmin can manage the link using system tools
like “alternatives”. Linux distributions usually manage this infrastructure by
themselves without additional work required from the fortran compiler side.
However, regular (non-root) users cannot switch the backend MPI. This is
only available on POSIX systems;

4. Different dynamic libraries named libcaf mpi.so are built for each MPI im-
plementation, each of them installed in different directories, e.g.

<some-prefix>/mpich/libcaf_mpi.so

<some-prefix>/openmpi/libcaf_mpi.so

By using the modules tool, users can select the preferred MPI implemen-
tation, e.g. module load mpich2-x86 64 in Fedora. This works by adding
entries in the LD LIBRARY PATH environment variable. Linux distribu-
tions usually manage this infrastructure by themselves and do not require
additional work from the fortran compiler side. Regular users are able to
choose the preferred MPI implementation, and the dynamic linker loads the
appropriate libcaf mpi.so;

5. A dynamic library “libcaf mpi.so” built by the dlopen() tool. This option
could be practical if the number of MPI functions were not too large (BTW,
how many?), and it can be built on both Linux and Windows OS;

6. A dynamic library “libcaf mpi.so” that is not linked with the MPI library,
but uses the dlopen() and dlsym() to load and access the contents of a specific
“MPI-linked” dynamic library, e.g. “libcaf mpi {mpich2|openmpi|other}.so”.

HPCLatAm 2013 - Page 213

In this way, “libcaf mpi.so” does not depend on any MPI implementation,
but acts as a thin wrapper to the specific CAF + MPI library. By using envi-
ronment variables or rc configuration files, the user can choose the preferred
library to open at runtime with dlopen(). Although dlopen() is specific to
POSIX systems, similar mechanisms are available on Windows OS.

On the one hand, from all the previous options, the last one is considered the
more robust and convenient since regular users can switch MPI library (as op-
posed to option 3), and environment variables are not strictly required (as in
option 4), since sysadmin could choose a default MPI by editing a general con-
fig file (e.g. located in /etc) and regular users could make a different choice by
editing a config file at $HOME. On the other hand, the last option can be seen
as “over-engineered” since having a simple libcaf mpi.a in the path, e.g. in the
$MPI/lib directory, could be the best option for most typical usage. Having a
“libcaf mpi.so” at the same location, will also allow dynamic switching. Nev-
ertheless, a potential usage for a dynamically linked version can be useful for
closed-source software.
For instance, regarding the current state of the coarray in the GNU–GFortran
compiler given in http://gcc.gnu.org/wiki/CoarrayLib#WARNING, two GNU
Fortran coarray communication libraries are available:

– A single-image library consisting of stubs, which allows to use a single im-
age without recompiling and is also useful for debugging. However, using
-fcoarray=single will produce a faster code.

– A MPI version which is a wrapper that calls to a library implementing the
MPI library, and it is planned as a purely MPI 1.x version. The current
rough version also uses few MPI 2.x features.

Nevertheless, the GNU–GFortran implementation of coarrays based in MPI is
currently in an embryonic state mainly due to other priorities in the implemen-
tation. For example, the mpi.c file of the official repo of the GNU–GFortran is a
stub, where there are calls to MPI Init, MPI Barrier, or similar. An implementa-
tion can be developed using the MPI 1.x, although it would also be possible with
MPI 2.x or MPI 3.x, because MPICH already support MPI 3.x. The use of MPI
3.x would make an easier implementation based on windows, a.k.a remote mem-
ory access or one-sided communication, all in the MPI Win XXX API, that were
included into the MPI2 to support the programming model of a shared memory
on a distributed memory environment. Therefore, a plausibe option could be to
assess if it is reasonably easy to start with MPI3 instead MPI2.

4 Conclusions

The use of PGAS models in Beowulf clusters through, for instance, the Berke-
ley UPC+GUPC and OpenUH compilers for the UPC and CAF programming
language extensions, respectively, are another resource for parallel computing on

HPCLatAm 2013 - Page 214

distribute memory systems with the advantage of being available with free soft-
ware resources on Unix-like operative systems. Additionally, some alternatives
for building a MPI based library for the coarray model on fortran compilers were
considered, from the simplest to more elaborated, and they could be used as a
basis for a work project.

Acknowledgments. This work has received financial support from Consejo
Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET, Argentina, grant
PIP 112-20111-00978), Universidad Nacional del Litoral (UNL, Argentina, grant
CAI+D 2009–III-4–2), Agencia Nacional de Promoción Cient́ıfica y Tecnológica
(ANPCyT, Argentina, grants PICT 2010-2492/16, PICT 2009-1141/07, PICT-
PRH 2009-0147), EU-IRSES (PIRSES-GA-2009-246977), and was performed
with the Free Software Foundation /GNU-Project resources such as GNU–Linux-
OS, GNU–GFortran, GNU–Octave, GNU–Git, GNU–Doxygen, and GNU–GIMP,
as well as other Open Source resources as LATEX.

References

1. Partitioned Global Address Space: http://www.pgas.org (2013)
2. Diaz, J., Muñoz Caro, C., Niño, A.: A survey of parallel programming models

and tools in the multi and many-core era. IEEE Trans. Parallel Distr. Syst. 23(8)
(2012) 1369–1388

3. Global-Address space networking: http://gasnet.cs.berkeley.edu (2013)
4. Aggregate Remote Memory Copy Interface (ARMCI): http://www.emsl.pnl.

gov/docs/parsoft/armci (2013)
5. ARMCI-MPI: http://wiki.mpich.org/armci-mpi/index.php/Main Page (2013)
6. Global Arrays (GA): http://www.emsl.pnl.gov/docs/global (2013)
7. Unified Parallel C: http://upc.gwu.edu (2013)
8. Coarray Fortran: http://www.co-array.org (2013)
9. Fortran 2008: http://www.nag.co.uk/sc22wg5 (2013)

10. González-Domı́nguez, J., Mart́ın, M.J., Taboada, G.L., Touriño, J., Doallo, R.,
Mallón, D.A., Wibecan, B.: UPCBLAS: A library for parallel matrix computations
in unified parallel C. Concurrency Comput. Pract. Ex. 24(14) (2012) 1645–1667

11. Berkeley UPC - Unified Parallel C: http://upc.lbl.gov (2013)
12. GNU Unified Parallel C (GNU UPC): http://www.gccupc.org (2013)
13. OpenUH compiler: http://www2.cs.uh.edu/˜openuh/index.shtml (2013)
14. G95 Fortran compiler: http://www.g95.org (2013)
15. Coyote cluster: http://www.cimec.org.ar/coyote (2013)
16. Open MPI: http://www.open-mpi.org (2013)
17. GNU Gfortran compiler: http://gcc.gnu.org/wiki/GFortran (2013)
18. ROSE compiler infrastructure: http://www.rosecompiler.org (2013)
19. MPICH: http://www.mpich.org (2013)

HPCLatAm 2013 - Page 215

