
Exploring the use of light threads to improve the
instruction level parallelism

D. González Márquez1, A. Cristal Kestelman2, and E. Mocskos1

1 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos Aires (C1428EGA), Argentina.
2 Barcelona Supercomputing Center, Artificial Intelligence Research

Institute - CSIC, Barcelona (08034), Spain.

Abstract. One of the main components of any general-purpose machine
is the microprocessor, this component can be found at the heart of every
machine: from standard servers and high performance computing nodes
to portable mobile platforms. Its main task is to correctly execute pro-
grams as fast as it can, having the production cost and consumption as
border conditions.
The research in processor architectures centers in optimizing the pro-
cessor design according to the specified functionality and having into
account present and future technologies. This optimization can be based
on different parameters: performance, consumption, production cost, sur-
face.
In this work, we propose a novel mechanism combining software and
hardware that allows to improve the Instruction Level Parallelism using
simple cores and light threads. A modified processor is implemented using
a simulation tool and two examples are presented: sorting an array and
filtering a matrix. In both cases, promising results are obtained.

1 Introduction

One of the main components of any general-purpose machine is the microproces-
sor, this component can be found at the heart of every machine: from standard
servers and high performance computing nodes to portable mobile platforms like
smartphones. Its main task is to correctly execute programs as fast as it can,
having the production cost and consumption as border conditions.

The research in processor architectures centers in optimizing the processor
design according to the specified functionality and having into account present
and future technologies. This optimization can be based on different parameters:
performance, consumption, production cost, surface.

Currently, due to technological limitations, the high performance comput-
ing processors are multi-core and multi-threaded, which diverted heavy research
activity towards this field. Parallelism allows the hardware to accelerate applica-
tions by executing multiple, independent operations concurrently [6]. Parallelism
can be found at three levels: instruction-level parallelism (ILP), thread-level par-
allelism (TLP), and data-level parallelism (DLP). Complex techniques such as

HPCLatAm 2013, pp. 196-209 (full paper)
Session: Prospective and Ongoing Projects

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

multiple instruction issue, out-of-order execution, speculation, and aggressive
branch prediction were used at extremely high clock rates, which resulted in
i) increased design complexity, ii) under-utilized silicon area, and iii) excessive
power dissipation [12].

Improvements in two of the three factors that have historically driven proces-
sor performance ILP and gates per clock, have essentially reached their limit [7].
The third factor, process technology, is also driving architectural change as it
becomes wire and power limited rather than device limited. Future architec-
tures will employ explicit parallelism to compensate for flat ILP to allow to
continue increasing the performance, feature modularity to minimize the use of
global wires, and exploit locality and heterogeneous architectures for power ef-
ficiency. Fortunately most emerging applications have large amounts of explicit
task and data-level parallelism and can be mapped to these new architectures.
Unfortunately, even in these new machines, power constraints limit achievable
performance [2].

Typically, a process consists of CPU state, kernel stack, working directory,
open file descriptors, signal table, signal mask, user id, group id, memory map.
The CPU state includes a stack pointer (SP), which points to the current ac-
tivation frame on the stack, the program counter (PC), which references the
current instruction; and the remaining registers that store other global and local
data [11]. Switching from one process to another introduces a large overhead. The
CPU state and the other process information must be stored, the Translation
lookaside buffer (TLB) is typically flushed and reloaded, and the next scheduled
process must restore its own CPU state and related information before starting
its execution. Communications between processes could be a complex procedure.

A thread is a light-weight process developed to overcome many of these short-
comings. Multiple threads can coexist within a process and share its memory
map, file descriptors, code, and global data. The state of each threads is only
composed by a program counter, stack pointer, stack, general purpose registers,
and a small amount of additional thread management information. The adop-
tion of user threads (threads directly controlled by the user) is a way to avoid
excessive user-kernel boundary crossings, which should be minimized in order to
achieve good performance, specially when using tens or hundreds of thousands
of threads.

Creating and running a single thread introduces overhead. Overheads include
thread creation, deallocation and any scheduling costs that may be incurred
when running a thread [11].

Current high-end commodity processors support eight or more simultaneous
threads of execution per CPU socket. Most computational nodes and scientific
workstations contain several multi-core sockets, allowing them to deliver sixteen
or more concurrent threads of execution. Multi-threaded applications that fully
utilize this hardware capability can notably improve their performance. A multi-
threaded application breaks an application into multiple pieces, or threads of
execution, that run concurrently. Applications that use one or very few threads
of execution will likely not benefit from newer architectures [3].

HPCLatAm 2013 - Page 197

Software development that do not take into account the new multi-core tech-
nologies will end with a single-threaded and poorly scaling software, not able to
take advantage of the extra processor cores. OpenMP is a framework focused on
scientific computing aim to help developing application using multiple threads.
Fürlinger et. al. analyzed the scalability behavior and the overheads of Open-
MP applications [4]. Analyzing and understanding the scalability behavior of
applications is an important step in the development process of scientific soft-
ware. Inefficiencies that are not significant at low processor counts may play an
important role when more processors are used and may limit the application’s
scalability.

The task of dividing programs into threads that will be executed in parallel is
rather straight forward for regular or numeric applications. Despite of introduced
overheads, the current compiler technology can perform it efficiently if enough
work is present. However, for general purpose programs (i.e. non-numerical pro-
grams), compilers usually fail to discover the potential thread-level parallelism
that could be effectively exploited [10].

In current multiprocessor systems, the processors are treated as independent
functional units. In this work, we propose a novel mechanism combining software
and hardware support to further improve ILP using light threads. This approach
is based on the use and organization of simple processors (i.e. in-order execution)
to decrease their complexity and improve power consumption. Out-of-order ex-
ecution consumes a significant amount of power by design[13]. The issue queue
together with the wake-up and select logic stands for a significant fraction of the
total energy consumed by a processor. Reported numbers are in the range from
18% for the Alpha 21264 [5], 19% for the Pentium Pro [9], and up to 40% for
the Pentium 4 [8].

The main idea is to consider a set of cores as an individual processor. The
work is assigned to this processor and the related execution threads are managed
and dispatched to the internal cores. The programmer is in charge of controlling
the available resources (i.e. the internal cores) using the support of the language,
compiler, and operating system.

This work tackles the problem of running very small chunks of code in par-
allel. Executing these tiny parallel pieces of code would be inefficient due to the
involved overhead using current multi-thread programming tools (like pthreads

and openMP).
The rest of this work is organized as follows: in section 2 the general archi-

tecture is shown, also some use examples are include. The section 3 the details
of the experiments are given and the obtained results are discussed. Finally, we
draw some conclusions and review some possible lines of future work in section
5.

2 Architecture

The large overheads related with thread creation, deallocation and scheduling
impose a threshold to the achievable parallelism. The key concept of this pro-

HPCLatAm 2013 - Page 198

posal is reducing these costs in a scenario of multiple threads that are executing
in multiple processors: a mechanism for administrating the execution contexts
related to the same memory map, same process and, even to the same memory
cache.

The new hardware is designed in order to work similarly to pthreads. The
idea is to run small pieces of code in different processors. The challenge is to
treat with the overhead introduced by the creation and starting of the threads:
if the amount of useful work is not enough, the proposed mechanism would turn
useless.

If we manage to reduce the overhead introduced by creating a thread using
hardware support, this should allow running very small pieces of code regardless
the operating system. The hardware support should have instructions to allow
configuration, starting and assigning a new thread from a processor to another
one.

The proposed architecture adds three important changes at hardware level:

1. Store an execution context: for a given task, we need to store the context,
and be able to execute it in the available cores.

2. Detection of task ending: need to know when a given task finished. A new
synchronization mechanism is added, this allows to stop and restart cores.

3. Modification to the instruction set: add new specific instructions to start,
stop and synchronize threads and cores.
The new instructions specifically added to manage the threads are:

– mth run: starts a new thread in a free core
– mth delegate: pause a thread and put the last one on the waiting queue
– mth end: stop the current thread
– mth syn: wait until the end of other thread

CPU
mth

CPU CPU
mth

CPU
mth

queue
mth

CPU
mth

CPU CPU
mth

CPU
mth

queue
mth

CPU
mth

CPU CPU
mth

CPU
mth

queue
mth

CPU
mth

CPU CPU
mth

CPU
mth

queue
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU
mth

CPU

queue
mth

CPU

queue
mth

CPU

queue
mth

CPU

queue
mth

A B

Fig. 1. Two possible processor internal organization: (A) each processor has a
predefined set of associated cores in which it can start light threads or micro-
threads, (B) each processor can start a thread in any available processor in a
pool.

In this architecture, there is no information about which processor should be
used or about the task’s characteristics. This proposal is based on a task queue. In
the case of no available cores for running a new task, the corresponding context

HPCLatAm 2013 - Page 199

is stored in a special structure, the queue. This is exemplified in the figure 1
in which this queue is incorporated to the red processor. When a core becomes
ready, the execution context will be delivered to it from the queue, its state
is load and the thread is started. This design allows to have severals threads
in fly. The synchronization between threads is implemented using an specific
instruction to set a core in an active waiting state.

The figure 1 shows two possible organizations for the multi-core processor.
There are two type of cores: i) full cores, which control the execution context
queue (red cores in the figure) and ii) mth cores which are simpler cores that
execute a light thread or micro-thread (mth).

The main difference between the mentioned organizations is:

– (A): there are a predefined set of mth cores assigned to each full core.

– (B): each full core can control (i.e. send micro threads) to any mth core.

The operating system only considers the the full cores to be scheduled and
managed, any type of signal or exception is handled by the full core, even if
it is generated by a mth core. The operating system delegates the mth core
management and scheduling to a full core, although it can access the mth core
internal state and restart it if necessary.

The internal organization of the (A) case can be used selecting a full core and
a set of mth cores to a specified task or application, giving to this application
the control of which mth cores are used. The associated limitation is that the
application parallelism is bounded by the number of mth cores assigned to the full
core, amount which is fixed by the processor architecture. Even though this could
be taken as a severe restriction, the adopted programming model could not use
a large or variable number of mth cores. Furthermore, this internal organization
allows the implementation of an independent communication channel between
the mth and full cores.

The case (B) can be fitted to a programming model requiring a large and
variable number of mth cores in the applications. In this scenario, a pool of
mth cores is introduced, each one can be managed by any full core. Two initial
problems are easily to point:

1. Having a pool of mth cores requires sharing a communication channel be-
tween all the cores, which means adding complexity to the processor orga-
nization.

2. Each application in the system could have a dynamic number of mths, each
one assigned to potentially different full core. The communication between
the threads should be considered due to the need of sending the process
execution context from one core to another. If this communication has to be
frequently done, adding an independent channel to each full core can help
alleviate this load.

These considerations show the importance and the coupling between the
programming model, the operating system and the proposed architecture.

HPCLatAm 2013 - Page 200

mth run

IF there is free core
core(free).state <- core(0).state
core(free).state.register(0) <- 0
core(free).state.pc().next_inst()

ELSE
new store_state
store_state.state <- core(0).state
store_state.register(0) <- 0
store_state.pc().next_inst()
mth_queue.add_back(store_state)

FI
core(0).state.register(0) = new mth_thread_id

mth end

IF mth_queue.empty()
core(current).halt()

ELSE
core(current) <- mth_queue.get_first_state()

FI

mth delegate

IF mth_queue.not_empty()
new store_state
store_state.state <- core(current).state
mth_queue.add_back(store_state)
core(current) <- mth_queue.get_first_state()

FI

mth syn

WHILE task_not_end(mth_thread_id) DO
OD

Fig. 2. Pseudo-code executed by the specific instructions implementing the MTH

mechanism. core is a processor array and mth queue is the pending micro-
threads to execute.

Code Example

In this simple example, we use a version for the light thread mechanism (MTH)
based on a Alpha microprocessor due to its simplicity of the implementation.
We apply three of the four new instructions: i) mth run for MTH creation, ii)
mth end for MTH finalization, and iii) mth wait for setting the MTH in waiting
state.

The figure 3 exemplifies the execution of a thread in a processor and the
steps needing to spawn a new thread:

A) The main thread stores two data in the registers (data 1 and data 2), these
registers will be used as input parameters for the function to be executed.

B) The main thread modifies the stack pointer, pointing to a new (empty) stack.
C) A free core is selected, the context is copied from the core running the main

thread to the new one (named Core mth in the figure). The context of the
two processors differs in the value stored in register 0, which was accordingly
changed in each one. This register is one of the register bank, any could be
used depending of the program.

D) The main thread continues its execution and jumps to the label jmp where
the original stack is restored.

E) The recently created MTH compares the register 0 and executes the other
branch. As can be seen, this mechanism can be used to divide the execution
flows between the recently created MTH and the main one.

F) After some processing, the main thread finishes and starts waiting for the
other thread.

G) When the new MTH finishes, the execution of mth end instruction activates
the main thread.

HPCLatAm 2013 - Page 201

beq $0, jmp

mov $1, data_1
mov $2, data_2
mov $30, current_stack
mov new_stack, $30
mth_run
beq $0, jmp

mth_end

mth_wait

jmp:
mov current_stack,$30

Core 0 Core mth

Fig. 3. MTH mechanism at work. (A) The main thread stores two data in the
registers (used as input parameters for the function to be executed), (B) Then,
modifies the stack pointer (a new empty stack is selected), (C) The context is
copied from the core running the main thread to the new one, The register 0
has a different value in each thread, (D) The main thread jumps to the label
jmp, the original stack pointer is restored, (E) The recently created MTH does
not branch (because the value of register 0), (F) The main thread finishes and
starts waiting for the other thread, (G) When the new MTH finishes, mth end

instruction activates the main thread.

This procedure shows the interaction between threads and the conditions
needed by MTH mechanism to be efficient. The setup procedure for the new thread
and the call to mth run instruction should be done fast enough to allow small
pieces of code to be delegated to other cores.

Synchronization

Synchronization between threads is implemented using a special instruction
(mth syn). This instruction produces the suspension of the calling thread un-
til another core finishes (i.e. call mth end). The active synchronization is used
based on the assumption that each thread has a similar amount of assigned work
and, in the case of needing to wait, they have to do it for few clock cycles. If
the need for longer waiting periods raises, another synchronization mechanism
should be considered, for example enqueue the current thread instead of execut-
ing a busy waiting. This waiting mechanism is only used by the main thread,
the rest of the spawned threads never have to wait.

HPCLatAm 2013 - Page 202

Programing Model

The proposed mechanism (micro-threads -MTH-) follows the pthreads program-
ming model, based on the fork-join mechanism. The main difference lays in the
amount of work (i.e. clock cycles) needed to execute a fork: in MTH is significantly
lower than in pthreads.

The thread creation is controlled by the programmer. This procedure is shown
in the figure 3 exemplifying the setup and starting of a new thread.

When a thread is created, the mth run instruction copies the needed parts of
the execution context from the original core to the new one (i.e. the core selected
by the MTH hardware mechanism to run the new micro-thread). In the case of no
available processor, this instruction copies the context to a waiting queue. Once
a processor becomes free, this context is copied from the queue to the processor
and the new micro-thread is started.

Both threads (the original and the new one) will execute the same sequence
of instructions, one selected register is used to differ both threads (for example,
register 0). In this way, both threads can select a different branch path using this
register value, and execute a different sequence of instructions. In the figure 3,
this is shown at point (C) and (E): both threads chooses a different path of
the branch based on a different value stored in register 0. As a remark, the
programmer (or compiler) can decide if both threads executes different codes,
as the use of the branch is not mandatory.

One important aspect of this model is that the micro-threads lives at user
space, the operating system interacts only with the main thread (i.e. all the
generated interruptions and exceptions are handled by the main thread).

3 Methodology and Results

In this section, the experimental details for testing the MTH mechanism are de-
scribed. The processor used in the simulations is based on the in-order ALPHA

architecture, supporting its full instruction set. The in-order processor allows to
use the simulated ticks as a measure of the time consumed by each function.

The processor supporting the MTH mechanism is simulated using GEM5 tool [1].
This tool is modified by adding a new module for managing micro-threads: they
are treated as execution contexts that can be executed in any available processor
in the system. This module is implemented at the system level in GEM5 and its
main functions are: i) saving the execution contexts to be executed in the cores,
ii) tracing the processor executing each micro-thread and iii) storing the context
waiting queue. Additionally, the module implements the specific instructions
introduced to support the MTH mechanism: mth run, mth delegate, mth end,
mth syn.

For example, this module has the responsibility to launch a new micro-thread
every time a processor becomes available by accessing the queue, and to access
the processor file register and internal registers to update them with the execu-
tion context.

HPCLatAm 2013 - Page 203

The two implemented examples used to test the MTH mechanism are based
on the pthreads philosophy to solve problems, but attacking very small instance
sizes to solve. The first problem is solved using a divide & conquer methodology,
parallel executing each part. In the second example, the problem is divided
without modifying the code and only identifying independent fragments of code,
resembling a standard compiler way of work.

Example 1: Sorting

The first implemented example consists in ordering a random set of elements
stored in an array.

Core mth 2

Core mth 3

Core 0

Core mth 1

merge merge

sort sort sort sort sort sort

2 CORE EXAMPLE 4 CORE EXAMPLE

merge merge merge merge

merge merge

Fig. 4. Sorting strategy with mth: the disordered array is split in parts (same
number as available cores). Each part is sorted using a heap-sort in an available
processor. The partially ordered parts are then merged.

In this example, heap-sort is initially used and, after obtaining the ordered
pieces of the array, a merging procedure is implemented.

The first step in the procedure is splitting the disordered array in as many
parts as available processors (in this example, 2 and 4 parts). The initial slices
are sorted using heap-sort, then the ordered pieces are merged. The figure 4
shows this procedure. The example for two cores is treated in the left side of
the figure: the disordered array is split in two parts, each one is assigned to an
available core. These disordered parts are sorted using a heap-sort algorithm,
then the two ordered parts are merged in the core 0. The example for 4 cores is
similar to the previous one, except that a new merging stage is added: the first
one merges the four ordered parts in two new partially ordered ones, and the
second stage obtains the final ordered array.

Figure 5 shows the results obtained for the sorting procedure considering
three different instance sizes: 32, 64 and 100 elements. For two cores, the obtained
results show interesting speed-ups: 1.6 times for 32 elements and 1.8 times for 64
and 100 elements (compared against single core). In all cases, both cores present
a fair load balance.

When solving the problem with four cores, the main difference is the emer-
gence of an unbalanced load: cores 2 and 3 have less assigned work than cores
0 and 1. As is shown in figure 4, the second stage of the merging procedure is
assigned to cores 0 and 1, leaving cores 2 and 3 in idle state.

HPCLatAm 2013 - Page 204

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

In
st

ru
ct

io
ns

 C
ou

nt

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

Cl
oc

k
tic

ks

Single Core Dual Core Quad Core
1.670

(59.866%)
1.854

(53.929%)
Instructions count
Clock Ticks

(a) 32 elements

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

0
1200
2400
3600
4800
6000
7200
8400
9600

10800
12000

In
st

ru
ct

io
ns

 C
ou

nt

0
2400
4800
7200
9600
12000
14400
16800
19200
21600
24000

Cl
oc

k
tic

ks

Single Core Dual Core Quad Core
1.805

(55.412%)
2.316

(43.180%)
Instructions count
Clock Ticks

(b) 64 elements

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

In
st

ru
ct

io
ns

 C
ou

nt

0
4000
8000
12000
16000
20000
24000
28000
32000
36000
40000

Cl
oc

k
tic

ks

Single Core Dual Core Quad Core
1.861

(53.722%)
2.625

(38.102%)
Instructions count
Clock Ticks

(c) 100 elements

Fig. 5. Using MTH mechanism to sort an array of 32, 64 and 100 elements. The
unbalanced load in the four cores case comes from the implemented algorithm:
two cores remain idle while the other two compute the last stage of the merge.

Example 2: Filter

In this example, the procedure consists in the implementation of a filter based
on a threshold value. A matrix is traversed and each value is kept if it is greater
than the selected threshold.

The simplicity in the parallelization methodology lays in the fact that each
value can be computed independently from the others, this is usually known as
an embarrassingly parallel problem. In this case, the only difficulty to tackle is
having enough work to do in each parallel worker.

HPCLatAm 2013 - Page 205

Core mth 2

Core mth 3

Core 0

Core mth 1

2 CORE EXAMPLE 4 CORE EXAMPLE

Fig. 6. Threshold based filtering using MTH mechanism: if the inspected value
is less than a selected value (threshold), it is painted black. The matrix is split
between the present cores in the system. Each matrix value can be independently
processed.

The figure 6 shows the implementation of the algorithm: the matrix is split
in as many parts as available cores. Each micro-thread inspects each value and
paint it black if the condition is not met (being greater than the threshold
value). Following the same methodology than in the previous example, running
the algorithm with two and four cores are considered.

Figure 7 shows the obtained results for two problem sizes: matrix with 32 and
64 elements. The obtained results show a near the optimum performance. The
reported speedup for two cores are near two times respect single core for both
problem sizes. The behavior in the case of four cores is very similar, presenting
a speedup of almost four times.

The independence in the operations of the implemented algorithm allows to
obtain these very interesting results. Although similar results could be expected
if the same problem is solved using OpenMP, the MTH mechanism allows treating
efficiently very small instance problems.

4 Discussion and Future Work

Some points in this work should be marked. Copying a micro-thread execution
context is an operation that necessarily should take some time, but could be
handled using an overlapping mechanism. For example, when a processor is near
to start the execution of a mth run instruction, the new core can be started
in advanced with the available information already copied to the corresponding
structures. Even though, if the initial instructions in the spawned micro-thread
do not use the execution context values, they can be increasingly copied when
they are needed by the processor. Another point where some optimization can
be included is before the execution of the mth end instruction. The system can
prepare the next micro-thread to be executed and send it to the processor while
it is still executing the previous micro-thread.

In the considered examples, all the needed processors were available when
needed, but in more realistic examples, this situation will not be the usual one.

HPCLatAm 2013 - Page 206

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

In
st

ru
ct

io
ns

 C
ou

nt

0
4000
8000
12000
16000
20000
24000
28000
32000
36000
40000

Cl
oc

k
tic

ks

Single Core Dual Core Quad Core
1.962

(50.958%)
3.811

(26.237%)
Instructions count
Clock Ticks

(a) matrix size 32

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

Core
0

Core
1

Core
2

Core
3

0
8000

16000
24000
32000
40000
48000
56000
64000
72000
80000

In
st

ru
ct

io
ns

 C
ou

nt

0
16000
32000
48000
64000
80000
96000
112000
128000
144000
160000

Cl
oc

k
tic

ks

Single Core Dual Core Quad Core
1.987

(50.337%)
3.935

(25.411%)
Instructions count
Clock Ticks

(b) matrix size 64

Fig. 7. Using MTH mechanism to filter a matrix of 32 and 64 elements. Almost
optimum speedups are obtained due to the embarrassingly parallel nature of the
problem.

The access to the memory is limited, increasing the amount of present cores
in the system will stress the memory system. The limit will be impose by the
available cores sharing the access to the memory and the size of the problems to
solve.

In the presented examples, the tasks are very simple and can be highly par-
allel if the overhead do not make it unproductive. The usual parallelization tools
(like OpenMP) relies in having enough work to do: the gain in computing time
should overcome the overhead of scheduling a new thread. The proposed MTH

mechanism showed that can handle smaller size problems.

The included examples only show the potential of this proposal. Exists two
additional considerations to solve in future works: i) interaction between several
processors (each one having associated mth cores) and ii) the behavior of the
operating system respect controlling the processors and their associated mth
cores.

Usually, the parallel code includes the generation of new threads inside a
do-while cycle: in every iteration a new thread is scheduled. In this type of
applications, new threads have to be managed and synchronized dynamically

HPCLatAm 2013 - Page 207

during the most part of the application execution. To deal with this important
class of parallelism, the model should be enhanced with new functionalities.

5 Conclusions

One of the main components of any general-purpose machine is the microproces-
sor, this component can be found at the heart of every machine: from standard
servers and high performance computing nodes to portable mobile platforms.
Improvements in two of the three factors that have historically driven proces-
sor performance ILP and gates per clock, have essentially reached their limit.
The third factor, process technology, is also driving architectural change as it
becomes wire and power limited rather than device limited.

Creating and running a single thread introduces overhead (i.e. creating, run-
ning, deallocation and scheduling). Current high-end commodity processors sup-
port eight or more simultaneous threads of execution per CPU socket.

The proposal introduced in this work is designed in order to work similarly
to pthreads: running small pieces of code in different simple processors. The
proposed architecture adds three important changes at hardware level: i) Store
an execution context, ii) Detection of task end, and iii) New specific instructions
to start, stop and synchronize threads and cores.

Two implemented examples were shown: one easy to parallelize (i.e. threshold
filter) and one needing a merging procedure which difficult the parallelization
(i.e. sorting problem). The obtained results show that the MTH mechanism can be
used to treat small problem instances using 2 and 4 simple cores with low added
overhead. For all the considered examples and number of cores, the performance
increase with the problem size.

Acknowledgments

E. Mocskos. is researcher of the CONICET (Argentina). D. González Márquez has a

scholarship from CONICET (Argentina). This work was partially supported by the co-

operation agreement between the Barcelona Supercomputing Center and Microsoft

Research, by the Ministry of Science and Technology of Spain and the European

Union (FEDER funds) under contracts TIN2007-60625 and TIN2008- 02055-E; by

the European Community Seventh Framework Programme [FP7/2007-2013] under the

ParaDIME Project, grant agreement no. 318693 and RISC (288883); Universidad de

Buenos Aires (UBACyT 20020100100889) and CONICET (PIP 1087/09).

References

[1] Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M.,
Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. SIGARCH Comput.
Archit. News 39(2), 1–7 (Aug 2011), http://doi.acm.org/10.1145/2024716.

2024718

HPCLatAm 2013 - Page 208

http://doi.acm.org/10.1145/2024716.2024718
http://doi.acm.org/10.1145/2024716.2024718

[2] Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: Proceedings of the 38th annual in-
ternational symposium on Computer architecture. pp. 365–376. ISCA ’11, ACM,
New York, NY, USA (2011)

[3] Farber, R.M.: Topical perspective on massive threading and parallelism. Journal
of Molecular Graphics and Modelling 30, 82–89 (2011)

[4] Fürlinger, K., Gerndt, M.: Analyzing overheads and scalability characteristics
of openmp applications. In: Proceedings of the 7th international conference on
High performance computing for computational science. pp. 39–51. VECPAR’06,
Springer-Verlag, Berlin, Heidelberg (2007), http://dl.acm.org/citation.cfm?

id=1761728.1761733

[5] Gowan, M., Biro, L., Jackson, D.: Power considerations in the design of the alpha
21264 microprocessor. In: 35th annual conference on Design Automation, 1998.
Proceedings. pp. 726–731 (1998)

[6] Hennessy, J.L., Goldberg, D., Patterson, D.A.: Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers, 5th edn. (Sep 2011)

[7] Horowitz, M., Dally, W.: How scaling will change processor architecture. In: Solid-
State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE
International. pp. 132–133. No. 1 (2004)

[8] Hsiao, K.S., Chen, C.H.: An efficient wakeup design for energy reduction in high-
performance superscalar processors. In: Proceedings of the 2nd conference on
Computing frontiers. pp. 353–360. CF ’05, ACM, New York, NY, USA (2005)

[9] Manne, S., Klauser, A., Grunwald, D.: Pipeline gating: speculation control for en-
ergy reduction. In: ISCA ’98: 25th Annual International Symposium on Computer
Architecture, 1998. Proceedings. pp. 132–141 (1998)

[10] Marcuello, P., Gonzalez, A.: Thread-spawning schemes for speculative mul-
tithreading. In: High-Performance Computer Architecture, 2002. Proceedings.
Eighth International Symposium on. pp. 55–64 (2002)

[11] Price, G.W., Lowenthal, D.K.: A comparative analysis of fine-grain threads pack-
ages. Journal of Parallel and Distributed Computing 63, 1050–1063 (2000)

[12] Soliman, M.I.: Design, implementation, and evaluation of a low-complexity vector-
core for executing scalar/vector instructions. Journal of Parallel and Distributed
Computing 73(6), 836 – 850 (2013), http://www.sciencedirect.com/science/
article/pii/S0743731513000282

[13] Vandierendonck, H., Manet, P., Delavallee, T., Loiselle, I., Legat, J.D.: By-passing
the out-of-order execution pipeline to increase energy-efficiency. In: Proceed-
ings of the 4th international conference on Computing frontiers. pp. 97–104. CF
’07, ACM, New York, NY, USA (2007), http://doi.acm.org/10.1145/1242531.
1242548

HPCLatAm 2013 - Page 209

http://dl.acm.org/citation.cfm?id=1761728.1761733
http://dl.acm.org/citation.cfm?id=1761728.1761733
http://www.sciencedirect.com/science/article/pii/S0743731513000282
http://www.sciencedirect.com/science/article/pii/S0743731513000282
http://doi.acm.org/10.1145/1242531.1242548
http://doi.acm.org/10.1145/1242531.1242548

