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Abstract. Within the myriad applications of Physics in Medicine, there are two 

major fields in terms of their relevance in clinical practice: Medical Imaging 

and Radiation Therapy. Both areas make extensive use of computational re-

sources in order to provide a prompt response to physicians, if possible in real 

time. Although execution times were dramatically reduced in the last decade 

with faster than ever CPUs, it is still common to wait several minutes and on 

some occasions, several hours for certain processing tasks to yield clinically 

useful results. Some frequent examples include tomographic image reconstruc-

tion, internal dosimetry calculation and radiotherapy planning. Acceleration of 

such processes may be sometimes vital or extremely important, not only for the 

patient –whose quality of life improvement is the ultimate goal-, but also for 

optimizing professional work in a busy hospital environment. In recent years, 

Medical Physics benefited greatly from the implementation of new computing 

strategies for several applications, particularly making use of GPU [1]. This 

short paper describes some of the current fields of our expertise in Medical 

Physics, where High Performance Computing (HPC) plays indeed a key role. 

1 Medical Image Processing 

 This field comprises a wide range of computing tasks, such as image recon-

struction, processing and analysis, generally aimed at enhancing diagnostic efficiency 

and assisting on therapy planning. In this section we describe two typical lines of re-

search in medical image processing, namely image segmentation and registration. 

1.1 Brain tissue segmentation from Magnetic Resonance Imaging 

 Image segmentation is a major discipline in general image processing, con-

sisting on the identification and further classification of different constituents or tex-

tures depicted in a given dataset [2]. In the case of biomedical images, automatic 

recognition and classification of different tissues becomes extremely important, for 

both diagnosis and therapy, in a qualitative or even also a quantitative fashion.  (i.e. 

study of white matter lesions in the brain in patients with multiple sclerosis, volume-
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try, etc.). A particularly interesting application is the automatic segmentation of Mag-

netic Resonance Imaging (MRI) of the brain. This imaging modality has a unique 

feature by producing high contrast in soft tissue (white matter, gray matter and 

cerebro-spinal fluid). The contrast can also be customized in MRI by selecting differ-

ent radiofrequency excitation sequences (i.e. T1, T2, DP). An updated and extensive 

review on MRI segmentation methods can be found in [3]. 

 One of the proposed statistical methods uses Bayesian Inference to segment 

the main tissues in the brain from MRI, using the Maximum Evidence criterion [4]. In 

a first approach, so called Discrete Model, it is assumed that every pixel can belong to 

only one tissue class. In a more complex approach, the Partial Volume Model, two 

classes are allowed to co-exist in every pixel with different probabilities, thus repre-

senting the situation at tissue border in a more realistic fashion. This models assume 

that every pixel takes an intensity value similar to its closest neighbors’, by means of 

an interaction potential. As every neighborhood is computed independently, the algo-

rithm calculates values pixel by pixel in sequential or nested loops for every iteration. 

Since in this case the classification outcome for every pixel does not influence the 

computation of others afterwards, this algorithm is a good candidate to be expedited 

with parallel programming, either on multi-core platforms or GP-GPU. 

The image to be processed, usually consists of a 3D dataset of dimensions 

256x256x256 voxels (2 bytes/voxel) and typical execution times using a gcc compiler 

are 5-10 minutes on an ordinary Core 2 Duo processor. We recently have implement-

ed this segmentation algorithm on GPU with promising results [5], achieving 15x 

speedup in comparison to the optimized code on CPU. 

1.2 Rigid and deformable registration of tomographic modalities 

 Another main field in medical image processing is the one bringing two or 

more datasets into spatiotemporal alignment. This process, known as registration, 

usually takes a reference image (2D or 3D of a given scan) to which two or more 

floating images of the same or different modalities (i.e. MRI- MRI, CT- MRI, PET- 

MRI, etc)
1
 are aligned after applying a spatial transformation. This operation may be 

rigid or deformable, and a cost function is optimized in an iterative algorithm. The 

motivations for such a process are multiple, ranging from diagnostic power enhance-

ment after comparing different modalities, disease follow-up, to assistance in radio-

therapy planning [6]. 

 A frequent problem is the combination of 3D tomographic scans of a given 

patient of the same or different modalities. The shape of certain body regions will not 

change noticeably between scans, such as the brain in most cases. In this case it is 

possible to apply rigid-body transformations which have only 6 degrees of freedom in 

3D. Other regions such as thorax and abdomen, however, deform considerably be-

tween scans due to various reasons: different patient positioning and curvature of the 

scanner bed, respiratory motion, physiological and/or structural changes, either nor-

mal or pathological. 

                                                           
1   CT: Computed Tomography ; PET:  Positron Emission Tomography 
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 In order to treat this challenging problem, we designed a deformable registra-

tion algorithm that applies a deformation field using Fourier basis functions on the 

floating image, choosing the Mutual Information as the similarity measure to be max-

imized [7]. A hierarchical subdivision scheme was applied to improve its efficiency 

and to avoid that the algorithm gets trapped in local maxima. In each subdivision 

stage, deformable registration is applied between corresponding subvolumes of the 

reference and floating image [8]. Finally, registered subvolumes are matched to 

neighbors using quaternion interpolation [9]. 

 Normally, and under the same compiling conditions and platform as de-

scribed in the previous section, this algorithm demands 30-40 minutes of CPU to reg-

ister two 512x512x50 voxel datasets. Given the hierarchical subdivision scheme cho-

sen in the algorithm design, this problem may be considerably accelerated using par-

allel computing as described in previous publications [1]. 

2 Radiotherapy 

 In Radiation Therapy, the calculation of the dose delivered by ionizing radia-

tion and the use of optimization algorithms on advanced methods of treatment, are the 

main areas where GPU programming has its greatest impact. In the clinical practice, 

the performance and accuracy of dose calculation are the foundations for the quality 

of treatment plans. Currently, treatment plans are evaluated by creating several plans 

until, according to medical criteria, a final plan is approved, meeting a compromise 

between the dose delivered to the tumor and dose received by healthy organs located 

around it. In addition to this, advanced treatment modalities such as intensity-

modulated radiation therapy (IMRT), require the execution of an optimization algo-

rithm to find the proper intensity for each treatment beam to conform the dispensed 

dose. This points out that the reduction of the execution times of dose calculation and 

optimization algorithms play a key role in the selection of the treatment plan, allow-

ing medical evaluation of a greater number of plans and the subsequent selection of 

the most suitable one. Fast elaboration of treatment plans also enables the implemen-

tation of adaptive treatments (Adaptive Radiation Therapy), a concept whereby the 

treatment plan created for a patient is adjusted periodically (along the weeks involv-

ing its execution) based on the patient response. In the extreme, the treatment plan 

could be adapted in each daily application. 

 The dose calculation algorithms that currently predominate on commercial 

treatment planning systems lie on resolving superposition integrals that compute the 

contribution to the dose produced by each element of the beam from the primary in-

teraction site to neighboring deposition sites. When the radiation beam is decomposed 

into multiple diverging beams of differential cross-section (known as beamlets), the 

solution of the problem is 2D and is known as pencil beam algorithm. When calculat-

ing the contribution of the beam from specific sites of interaction, the problem be-

comes 3D and the algorithm is known as convolution/superposition. In both types of 

algorithms the dose is obtained by calculating the contribution of each beamlet by 

convoluting it with a kernel (appropriate for each problem) representing the dose dep-
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osition produced by a unit intensity beamlet. The contribution of each interaction site 

is independent of the others, which makes these algorithms ideal candidates for paral-

lel programming. Several research groups have reformulated pencil beam and convo-

lution/superposition algorithms for GPU implementation [10, 11, 12], reporting 

speedups of 200-400x [13]. 

 The first step in the implementation of this kind of algorithms is to calculate 

the distance from the source of radiation and from the interaction site to the dose dep-

osition site. To do this, a line integral must be solved weighting the distance traveled 

with the electron density of the traversed CT voxels. These types of methods (known 

as raytracing) are computationally demanding and, for each beam into a treatment 

plan, the radiological distance of thousands of lines must be calculated. As each 

traced line is independent, raytracing algorithms could be adapted for parallel imple-

mentation [14, 15], reporting speedup of 6x. This type of increase, while modest, is 

essential to achieve real time dose calculation. 

 Monte Carlo methods offer more accurate dose calculation algorithms than 

those mentioned above, but are computationally more expensive and its implementa-

tion in clinical practice is not yet widely available. Monte Carlo techniques simulate, 

from first principles, how the history of each particle in the irradiation beam evolves. 

The addition of billions of particle histories gives statistical accuracy to the method. 

Since each particle of the primary beam is independent of the others, the Monte Carlo 

algorithms are ideal for parallel computation. However, due to the complexity of the 

method, only moderate acceleration has been reported [16, 17]. 

Currently, at Fundación Escuela de Medicina Nuclear de Mendoza, we are working 

to implement pencil beam type algorithm for electron beam dose calculation (along 

with a raytracing algorithm for radiological distance calculation) onto GPU. These 

algorithms will be used in modulated compensatory equivalent tissue design [18, 19, 

20], which will calculate the necessary compensatory tissue for greater conformation 

of the delivered dose to the tumor in real time. 
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