
Trading Off Performance for Power-Energy
in Dense Linear Algebra Operations

Peter Benner1, Pablo Ezzatti2, Enrique S. Quintana-Ortí3, and
Alfredo Remón1

1 Max Planck Institute for Dynamics of Complex Technical Systems, D-39106
Magdeburg, Germany. {benner,remon}@mpi-magdeburg.mpg.de

2 Instituto de Computación, Universidad de la República, 11.300-Montevideo,
Uruguay. pezzatti@fing.edu.uy

3 Dpto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I,
12.071–Castellón, Spain. quintana@icc.uji.es

Abstract. We analyze the performance-power-energy balance of a con-
ventional Intel Xeon multicore processor and two low-power architectures
–an Intel Atom processor and a system with a quad-core ARM Cortex
A9+NVIDIA Quadro 1000M– using a high performance implementation
of Gauss-Jordan elimination (GJE) for matrix inversion. The blocked ver-
sion of this algorithm employed in the experimental evaluation mostly
comprises matrix-matrix products, so that the results from the evalua-
tion carry beyond the simple matrix inversion and are representative for
a wide variety of dense linear algebra operations/codes.

1 Introduction

General-purpose multicore architectures and graphics processor units (GPUs)
dominate today’s landscape of high performance computing (HPC), offering un-
precedented levels of raw performance when aggregated to build the systems of
the Top500 list [6]. While the performance-power trade-off of HPC platforms
has also enjoyed considerable advances in the past few years [4] —mostly due
to the deployment of heterogeneous platforms equipped with hardware accelera-
tors (e.g., NVIDIA and AMD graphics processors, Intel Xeon Phi) or the adop-
tion of low-power multicore processors (IBM PowerPC A2, ARM chips, etc.)—
much remains to be done from the perspective of energy efficiency. In particular,
power consumption has been identified as a key challenge that will have to be
confronted to render Exascale systems feasible by 2020 [7, 11, 12]. Even if the
current progress pace of the performance-power ratio can be maintained (a fac-
tor of about 5× in the last 5 years [4]), the ambitious goal of yielding a sustained
ExaFLOPS (i.e., 1018 floating-point arithmetic operations, or flops, per second)
for 20–40 MWatts by the end of this decade will be clearly exceeded.

In recent years, a number of HPC prototypes have proposed the use of low-
power technology, initially designed for mobile appliances like smart phones and
tablets, to deliver high MFLOPS/Watt rates [1, 2]. Following this trend, in this
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paper we investigate the performance, power and energy consumption of two low-
power architectures, concretely an Intel Atom and a hybrid system composed of a
multicore ARM processor and an NVIDIA 96-core GPU, and a general-purpose
multicore processor, using as a workhorse matrix inversion via Gauss-Jordan
elimination (GJE) [16]. While this operation is key for the solution of important
matrix equations arising in control theory via the matrix sign function [8, 19], the
relevance of this study carries beyond the inversion operation/method or these
specific applications. In particular, a blocked implementation of matrix inver-
sion via GJE casts the bulk of the computations in terms of the matrix-matrix
product, so that its performance as well as power dissipation and energy con-
sumption are representative for many other dense linear algebra operations such
as, e.g., the solution of linear systems, linear-least squares problems, eigenvalue
computations, etc.

The rest of the paper is structured as follows. In Section 2 we briefly review
matrix inversion via the GJE method and the applications of this particular
operation. Next, in Section 3, we describe the specific implementation of the
GJE method on the two low-power architectures selected for our study: i) an
Intel Atom processor not much different, from the programming point of view,
from a mainstream multicore processor like the Intel Xeon or the AMD Opteron;
and ii) a hybrid board with ARM+NVIDIA technology that can be viewed as
a low-power version of the heterogeneous platforms equipped with hardware ac-
celerators that populate the first positions of the Top500 list. Finally, Sections 4
and 5 contain, respectively, the experimental evaluation and a few concluding
remarks resulting from this investigation.

2 Matrix inversion via GJE and its Applications

Gauss-Jordan elimination is an appealing method for matrix inversion, with a
computational cost and numerical properties analogous to those of traditional
approaches based, e.g., on the LU factorization [16], but superior performance
on a variety of architectures, from clusters [18] to general-purpose multicore
processors and GPUs [8].

Figure 1 shows a blocked version of the GJE algorithm for matrix inver-
sion using the FLAME notation. There m(A) stands for the number of rows
of matrix A while, for details on the notation, we refer the reader to [9, 15].
A description of the unblocked version of GJE, called from inside the blocked
routine, can be found in [18]; for simplicity, we do not include the application of
pivoting during the factorization, but details can be found there as well. Given
a square (nonsingular) matrix of size n = m(A), the cost of matrix inversion
using this algorithm is 2n3 flops, performing the inversion in-place so that, upon
completion, the entries of A are overwritten with those of its inverse.

Our primary interest for the GJE matrix inversion method is twofold. First,
most of the computations of the blocked algorithm are matrix-matrix products
(see Figure 1). Therefore, the conclusions from our power-performance evalu-
ation can be extended to many other dense linear algebra kernels such as the
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Algorithm: [A] := GJE_blk(A)

Partition A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ATR

ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× bA01

A11

A21

 := GJE_unb

A01

A11

A21

 Unblocked Gauss-Jordan

A00 := A00 +A01A10 Matrix-matrix product
A20 := A20 +A21A10 Matrix-matrix product
A10 := A11A10 Matrix-matrix product
A02 := A02 +A01A12 Matrix-matrix product
A22 := A22 +A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with(
ATL ATR

ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Fig. 1. Blocked algorithm for matrix inversion via GJE without pivoting.

solution of linear systems via the LU and Cholesky factorizations, and least-
squares computations using the QR factorization [14], among others.

Additionally, explicit matrix inversion appears during the computation of the
sign function of a matrix A using the simple Newton iteration [19]

A0 := A,
Ak+1 := 1

2 (Ak +A−1
k ), k = 0, 1, 2, . . . ;

(1)

and this particular matrix function plays an important role in the solution of
spectral division problems [14, 10] as well as control theory applications (e.g.,
model reduction and optimal control) [17], and is the bottleneck computation in
many lattice quantum chromodynamics computations [13].
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3 Parallelization of GJE on Multicore and Manycore
Architectures

As previously stated, the GJE algorithm for matrix inversion casts the bulk of
the computations in terms of matrix-matrix products; see Figure 1. In particu-
lar, provided the block size b is chosen so that b � n, the computational cost of
the factorization of the “current” panel Â =

[
AT

01;A
T
11;A

T
21

]T , performed inside
the routine GJE_unb, is negligible compared with that of the update of the re-
maining matrix blocks following that operation. Therefore, the key to attaining
high performance with this algorithm primarily relies on using a highly tuned
implementation of the matrix product and, under certain conditions, the reduc-
tion of the serial bottleneck that the factorization of Â represents applying, e.g.,
a look-ahead strategy [20].

Fortunately, there exist nowadays highly efficient routines for the matrix-
matrix multiplication, embedded into mathematical libraries such as Intel MKL,
AMD ACML, IBM ESSL, or NVIDIA CUBLAS; but also as part of independent
development efforts like GotoBLAS2 [21] or OpenBLAS [5]. Therefore, for the
implementation of GJE in the multicore Atom processor (as well as for the Intel
Xeon processor that will be used for reference in the experimental evaluation),
we simply leverage the matrix product kernel sgemm in a recent version of Intel
MKL.

Let us consider next the hybrid SECO development kit [3], which combines a
quad-core NVIDIA Tegra3/ARM Cortex A9 processor and an NVIDIA Quadro
1000M GPU with 96 cores. As briefly described next, the properties of the GJE
algorithm and the hybrid nature of the target platform ask for an implementation
that harnesses the concurrency of the operation while paying special attention to
diminish the negative impact of communications between the memory address
spaces of the A9 processor and the Quadro GPU.

In a previous work we introduced a CPU-GPU implementation of the GJE
algorithm [8], and demonstrated the benefits of mapping each operation to the
most convenient device: multicore processor or manycore accelerator. Here we
apply a similar approach to obtain a tuned implementation of the GJE algo-
rithm for the SECO platform, performing the matrix-matrix products on the
manycore GPU, the factorization of Â on the low-power CPU, and tuning the
block size for these particular architectures and each problem size. Furthermore,
we include look-ahead in the implementation, to overlap the factorization of the
(k+1)-th panel with part of the updates performed at iteration k and keep a low
communication overhead. Finally, the parallelism intrinsic to the matrix-matrix
products that appear in algorithm GJE_blk, and in the vector operations in
algorithm GJE_unb, are exploited employing multi-threaded implementations
of the corresponding kernels from libraries CUBLAS and reference BLAS (using
OpenMP), respectively.
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4 Experimental Evaluation

In this section, we evaluate the matrix inversion routines on three target plat-
forms: a state-of-the-art server equipped with two multicore Intel Xeon (“Ne-
halem”) processors, an Intel Atom-based laptop, and an ARM+NVIDIA board
from SECO. Details about the hardware and the compilers employed in each
platform can be found in Table 1. The inversion routines for the Xeon and Atom
processors heavily rely on the matrix-matrix routine in Intel MKL (versions
10.3 and 11.0, respectively). The hybrid implementation for the SECO platform
makes intensive use of the kernels in CUBLAS (version 4.0) and the legacy im-
plementation of BLAS4 parallelized with OpenMP. (We note however, that the
amount of computation that is performed in the cores of the A9 processor is
small, and mostly based on BLAS-1 and BLAS-2 operations, so that we do not
expect significant differences if a tuned version of BLAS was used for this ar-
chitecture.) The codes were compiled with the -O3 optimization flag and all the
computations were performed using single precision arithmetic.

Plat. Processor #Cores Freq. RAM size & Peak Comp. PI

(GHz) type (GFs) (Watts)
Xeon 2 × Intel Xeon E5504 8 2.0 32 GB 128.0 icc 67.0

DDR3 v12.1.3
Atom Intel Atom N270 1 1.6 1 GB 3.2 gcc 11.6

DDR2 v4.6.3
SECO ARM Cortex A9 4 1.3 2 GB, DDR3L 270.0 gcc 11.2

NVIDIA Quadro 1000M 96 1.4 2 GB, DDR3 v4.5

Table 1. Architectures employed in the experimental evaluation and the average power
dissipation while idle (PI).

In order to measure power, we connected a WattsUp?Pro wattmeter (ac-
curacy of ±1.5% and a rate of 1 sample/sec.) to the power line from the electric
socket to the power supply unit (PSU), collecting the results on a separate server.
All tests were executed for a minimum of 1 minute, after a warm up period of 2
minutes. Since some of the platforms where the processors are embedded contain
other devices —e.g., disks, network interface cards, and on the Atom laptop even
the LCD display— on each platform we calculated the average power while idle
for 1 minute, PI , and then used this value to calculate the net energy, corre-
sponding to the consumption after subtracting PI from the power samples. We
expect this measure allows a fair comparison between the architectures, as in
this manner we only evaluate the energy that is necessary to do the actual work.

4 Available at http://www.netlib.org/.
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Xeon Atom SECO
n Time GFLOPS Pavg Pmax Etot Enet Time GFLOPS Pavg Pmax Etot Enet Time GFLOPS Pavg Pmax Etot Enet
256 0.002 16.8 175.5 175.5 0.4 0.21 0.51 0.1 15.2 15.2 7.8 1.83 0.18 0.2 19.1 19.2 3.1 1.42
512 0.008 33.6 152.2 152.5 1.2 0.68 1.47 0.2 15.5 15.6 22.8 5.73 0.38 0.7 20.0 20.3 7.5 3.34

1,024 0.04 53.7 185.2 185.2 7.4 4.72 4.03 0.5 16.1 16.3 64.9 18.13 0.88 2.4 20.8 21.7 18.3 8.44
2,048 0.29 59.2 183.9 184.7 54.8 33.90 15.41 1.1 15.8 15.9 243.6 64.72 2.29 7.5 25.5 27.0 58.4 32.74
3,072 0.86 67.4 189.0 190.0 162.5 104.92 33.97 1.7 15.8 16.1 536.8 142.67 4.66 12.4 27.9 30.6 130.2 77.82
4,096 1.82 75.5 190.0 190.9 346.9 223.86 80.94 1.7 15.7 15.9 1,270.8 331.85 7.50 18.3 27.6 30.9 207.0 123.00
5,120 3.46 77.6 188.2 189.5 652.7 419.35 154.58 1.7 15.7 16.0 2,427.0 663.77 11.26 23.8 30.1 36.5 338.8 212.81
6,144 5.58 83.1 193.1 193.8 1,077.5 703.64 266.20 1.7 15.7 16.0 4,179.4 1,091.42 19.40 23.9 31.1 40.2 603.6 386.06
7,168 8.56 86.1 193.2 194.4 1,654.8 1,080.27 420.66 1.8 15.6 16.0 6,562.4 1,682.64 23.66 31.1 33.4 39.5 789.2 525.25
8,192 12.42 88.5 190.2 190.4 2,363.2 1,530.14 631.43 1.8 15.9 16.3 10,039.8 2,715.14 32.99 33.3 35.1 41.3 1,159.3 788.46

Table 2. Time (in sec.); GFLOPS; average and maximum power consumption (Pavg and Pmax, respectively, in Watts); and total and
net energy (Etot and Enet, respectively, in Joules).

HPCLatAm 2013 - Page 163



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

10

20

30

40

50

60

70

80

90

dimension

G
F

L
O

P
S

Performance

 

 

Xeon

Atom

SECO

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dimension

G
F

L
O

P
S

 /
 W

a
tt

s

Performance−per−watt 

 

 

Xeon

Atom

SECO

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

1.5

dimension

G
F

L
O

P
S

 /
 W

a
tt

s

Performance−per−watt 

 

 

Xeon

Atom

SECO

Fig. 2. Performance (top plot); and total and net performance-per-watt (bottom left
and right plots, respectively).

Table 2 collects the results obtained from the execution of the different imple-
mentations of the GJE matrix inversion algorithm on the three target platforms,
for problems of dimension n varying from 256 to 8,192. The same information is
refined and collected graphically, in terms of GFLOPS and GFLOPS/Watt, in
Figure 2. The results characterize the different performance-power-energy bal-
ance of the platforms: The Intel Xeon is considerably faster than the Intel Atom,
in factors that range from more than 255× for the smaller problem dimensions,
to about 50.8× for the larger ones; but the power dissipated by the Atom archi-
tecture is, depending on the problem size, 9.8 to 12.4× lower than that of the
Intel Xeon architecture. The outcome of the combination of these two factors
is that, from the perspective of total energy, the Intel Atom requires between
4.25 and 22.0× more energy than the Intel Xeon to compute the inverse; but the
excess is only between 1.77 and 8.46× if we consider net energy. On the other
hand, the SECO board presents quite an interesting balance. While being clearly
slower than the Intel Xeon (especially for the smaller problems), this platform
also shows a remarkable advantage from the point of view of energy efficiency.
Thus, when the problem size is larger than 2,048, the ratios for the total and net
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energy of these two platforms are, respectively, up to 2.04 and 1.94× in favor of
the SECO system.

5 Concluding Remarks and Future Directions

We have investigated the trade-off between performance and power-energy for
two low-power architectures, comparing those to a conventional general-purpose
multicore processor. Our experimental evaluation using blocked routines for GJE
matrix inversion shows that, for dense linear algebra operations which are rich
in matrix-matrix products (or any other Level-3 BLAS kernel), the race-to-idle
strategy (i.e, execute the task as fast as possible, even if there is a high power
dissipation associated with that) is crucial to attain both high throughput and
performance-per-watt rates on general-purpose processor architectures, favoring
power-hungry complex designs like the Intel Xeon processor over the Intel Atom
counterpart. However, the experimentation also shows that a hybrid architecture
that combines a low-power multicore processor and a limited GPU can offer
competitive performance compared with that of the Intel Xeon platform, while
being clearly superior from the perspective of energy efficiency.
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