
Towards a Massively Parallel simulations with
PFEM-2

Juan M. Gimenez1,2 and Norberto M. Nigro1,2

1 Centro de Investigaciones en Mecánica Computacional (CIMEC), UNL/CONICET,
Predio Conicet-Santa Fe Colectora Ruta Nac 168 / Paraje El Pozo, Santa Fe,

Argentina, www.cimec.org.ar
2 Facultad de Ingenieŕıa y Ciencias Hı́dricas - Universidad Nacional del Litoral.

Ciudad Universitaria. Paraje ”El Pozo”. Santa Fe. Argentina. www.fich.unl.edu.ar

Abstract. In this work an implementation of the Particle Finite
Element Method Two (PFEM-2) based on the distributed-memory
architecture is presented. PFEM-2 consists on a material derivative
based formulation of the transport equations with an hybrid spatial
discretization which uses an eulerian mesh and lagrangian particles.

Strategies for the parallelization of eulerian methods based on mesh
or lagrangian solutions based on particles which solve fluid-dynamics
problems are widely studied separately, however not enough works treat
the use of both approaches together. Typical solutions for domain-
distribution on eulerian frames are not proper to balance the work-load
on some lagrangian stages, then to achieve good performance must be
analyzed the use of weighted decomposition to the partitioning.

Performance analysis of the implementation running over a beowulf
cluster are presented. The weighted partitioning can be used to improve
the speed-up when the diffusion of the problem is low, on the other
hand, with large diffusion a classical eulerian decomposition is the best
choice. However the overall cpu-time required to solve the presented
incompressible flow cases with the PFEM-2 method is lower than using
classical eulerian solvers, which give auspicious future thinking in solving
massively parallel simulations.

1 Introduction and Motivation

Formulations for transport equations may be split in two classes depending
on the approach chosen for the description of the inertial terms, namely
Eulerian and Lagrangian approaches. The simulation of incompressible flows
has been mainly based on the Eulerian formulation (temporal derivative plus
a convective term), while Lagrangian formulations (material derivative) justify
their popularity solving free-surface flows or complicated multi-fluid flows
in which the standard Eulerian formulations are inaccurate or, sometimes,
impossible to be used.

Maybe the most used eulerian method is the Finite Element Method (FEM)
where the calculations are done over a mesh which represents the geometry

HPCLatAm 2013, pp. 145-157 (full paper)
Session: CPU and Multicore Architectures and Applications

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

allowing to discretize the problem using a set of shape functions obtaining
an algebraical system of nodal equations. FEM solvers are very accurate and
robust with elliptic problems (diffusion-dominant) but has problems to deal
with hyperbolic problems (convection-dominant) because requires including
stabilization terms and, if the problems is incompressible flow, must deal with
the non-linear term of convection which includes several restrictions to the time-
step[1].

On the other hand, particle methods are considered more efficient. This
feature is attributed first to the simplicity of its computation with minimum
amount of information needed to update the solution and principally to be in
a better position attending to the present of hardware technology based on the
use of parallel computers and general purpose graphic processor units (GPGPU).
However they only can solve in an accurate way problems with low diffusion then
they are not proper to solve engineering problems where force calculations are
involved.

The Particle Finite Element Method (PFEM)[2][3] added with an eXplicit
Integration following the Velocity and Acceleration Streamlines (X-IVAS)[4][5]
is called Particle Finite Element Method Second Generation (PFEM-2). This
method, which uses the lagrangian formulation of the equations, solves the
weakness of the two above mentioned approaches applying them only in its best
case, i.e. eulerian frame to solve diffusion using a mesh and lagrangian frame
to solve convection with particles. Finally, PFEM-2 is a particle method which
proves that even for homogeneous fluid flows, without free-surfaces or internal
interfaces, it is able to yield accurate solutions while being competitively fast
when compared to state-of-the-art Eulerian solvers.

The competitiveness of the method depends on the performance of the
implementation. A good algorithmic idea can be overshadowed if a poor
programming strategy is used. Nowadays, an efficient implementation must
include strategies to make intensive use of parallel hardware technologies.
Although the hybrid spatial discretization used by PFEM-2 allows to use the
optimum strategy to calculate each equation term, keeping in memory the data
of the mesh and of the cloud of particles represents an important storage cost
which limits implementations that works in only one computer. Therefore, is
imperative to develop a distributed-memory implementation. In order to develop
a multi-machine implementation to PFEM-2 is essential not to reinvent the
wheel. Reusing some code amortizes the formidable software development effort
required to support parallel unstructured mesh-based simulations. In the open-
source community there are several object-oriented toolkits and libraries[6][7]
which can be extended by developers for their specific applications. In the current
work the libMesh library[8] is chosen as the basis of the development. It is an
open-source OOP-C++ library to the numerical simulation using non-structured
discretizations over sequential or parallel platforms. Although libMesh solves
the problem of the implementation of the FEM issues of PFEM-2, the parallel
particle management remains to be developed. Particle stages in PFEM-2 include
the movement of the particles along the entire domain and the updating of the

HPCLatAm 2013 - Page 146

nodal data from the particle data (or vice verse). To manage those features, a
smart distribution of the particles over the processes is needed and in this work
a dual particle-mesh distribution is adopted.

In what follows, a review of the PFEM-2 method is presented in the section
2, where the features that allows to the method to run with large time-steps are
explained. Section 3 presents a detailed analysis of the extension of libMesh to
manage particles remarking the strategy to distribute the cloud along the sub-
domains. Several Navier-Stokes simulations over Beowulf clusters are analyzed in
section 4, focusing on the efficiency obtained by the implementation. Also, the
performance is compared with the widely used CFD software OpenFOAM®.
Finally some concluding remarks are drawn in Section 5.

2 Review of PFEM-2

The PFEM-2 method is principally motivated by solving viscous incompressible
flow equations as fast as possible. Its formulation allows to find numerical
results of others scalar or vectorial transport equations, such as heat equation
or turbulence modeling, and, also, the coupling between two or more of them[9].

Navier-Stokes equation system describes the behavior of newtonian viscous
incompressible flow, its formulation is based on momentum-transport equation
which is normally coupled with the equation for the local mass balance.
Lagrangian expressions are shown in Equations 1 and 2,

ρ
Dv

Dt
= −∇p+∇ · (µ(∇vT +∇v)) + f (1)

∇ · v = 0 (2)

where the unknowns are the velocity vector v and the pressure p, µ is the fluid
dynamic viscosity, ρ is the fluid density and f is an external force.

It is well known[10] that the time step selected in the solution of the transport
equations is stable only for time steps which regards the limitation imposed
by two critical dimensionless numbers: the Courant-Friedrichs-Lewy number

(CFL = |v|∆t
∆x) and the Fourier number (Fo = µ∆t

∆x2). The former concerns
with the convective terms and the latter with the diffusive ones. In Eulerian
formulation both numbers must be less than a constant order one to have stable
algorithms. For convection dominant problems like high Reynolds number flows,
the condition CFL < 1 becomes crucial and limits the use of explicit methods
or makes the solution scheme far from being efficient. Moreover in diffusion
dominant problems where the time step decreases with the square of the grid
size doing unapproachable in problems using very refined meshes.

The key of the PFEM-2 algorithm is the ability to reach CFL >> 1 due to
the information is transported on the particles. This transport is performed
following the streamlines computed explicitly with the information of the
previous time step. This new method was named eXplicit Integration following
the Velocity and Acceleration Streamlines (X-IVAS)[4]. Briefly, the algorithm
takes the streamlines as stationary on each time step (vn, where n is the

HPCLatAm 2013 - Page 147

previous time step), then the particle position follows that velocity field and
the particle state variables are updated by the change rate determined by the
physics equations (also fixed at time n).

xn+1
p = xnp +

∫ 1

0

vn(xn+τp) dτ (3)

vn+1
p = vnp +

∫ 1

0

an(xn+τp) + fn+τ dτ (4)

where an = −∇pn + ∇ · (µ(∇vnT + ∇vn)) which are nodal variables.
Temporal integration for the position and velocity can be solved using analytical
expressions or high-order integrators. However, in this work a novel sub-stepping
integrator is used where it can adapt its δt depending on its local CFL number.

xn+1
p = xnp +

N∑
i=1

vn(x
n+ i

N
p) δtp (5)

The expression for δt is

δtp =
∆t

K × CFLh
(6)

where CFLh =
|v|∆t
h

is the CFL number of the element which contains the

particle, and K is a parameter to adjust the minimal number of sub-steps
required to cross an element.

To solve the Navier-Stokes equation, systems (3) and (4) are solved coupled
with the incompressibility restriction. A typical Fractional Step Method is used
to solve the coupling between the pressure and the velocity[4].

Having in mind that the incompressibility restriction is non-local, an implicit
scheme is needed. This feature normally diminishes the efficiency of explicit
incompressible flow solvers causing that the final decision about the selection
of the integration scheme be pushed on fully implicit solver. In order to keep
PFEM-2 explicit and being that Fixed Mesh version may exploit the benefits
of having a constant Poisson matrix for the pressure equation, this matrix is
initially factorized (completely or incompletely depending on the problem size)
and latterly used as a preconditioner. With this fact in mind and in order to
enlarge the time step limited by the dimensionless Fourier number, the possibility
to solve part of the diffusion terms in an implicit way may be included. Using
the same idea for the pressure equation, an initial factorization is chosen as a
preconditioner for the diffusion part.

Finally, the algorithm 1 for PFEM-2 for incompressible flows is reported.
This includes the implicit correction for the viscous diffusion which allows to
enlarge the time-step to overcome the critical Fourier number condition Fo ≤ 1.

HPCLatAm 2013 - Page 148

Algorithm 1 - Time Step PFEM-2 Incompressible Flow.

1. Acceleration Stage: Calculate acceleration on the nodes like a FEM:∫
Ω
N anτ dΩ ≈ 1

ρ

∫
Ω
N ∇ · τn dΩ = 1

ρ
(−

∫
Ω
∇N · (µ(∇vn + ∇vnT)) dΩ +∫

Γ
N (∇vn +∇vnT) · η dΓ)∫
Ω
N anp dΩ ≈ 1

ρ

∫
Ω
N ∇pn dΩ = 1

ρ
(−

∫
Ω
∇N pn dΩ +

∫
Γ
N pnη dΓ)

an = −anp + (1− θ) anτ
2. X-IVAS Stage: Evaluate new particles position and state following the streamlines:

xn+1
p = xnp +

∫ 1

0
vn(xn+τp) dτ

ˆ̂vn+1
p = vnp +

∫ 1

0
an(xn+τp) + fn+τ dτ

3. Projection Stage: Project state to the mesh:
ˆ̂vn+1
j = π(ˆ̂vn+1

p)
4. Implicit Viscosity Stage: Implicit correction of the viscous diffusion with FEM:

ρv̂n+1
j = ρˆ̂vn+1

j +∆t θ an+1
τ

5. Poisson Stage: Search the pressure value solving the Poisson equation system with
FEM:
ρ∇ · v̂n+1

j = ∆t ∇ · [∇(δpn+1)]
6. Correction Stage: Update the mesh and particle velocity with pressure and

diffusion corrections:
ρvn+1

j = ρv̂n+1
j −∆t (an+1

p − anp)

ρvn+1
p = ρv̂n+1

p −∆t π−1(an+1
p − anp) +∆t θ π−1(an+1

τ)

3 Brief Summary of Distributed Memory Implementation

PFEM-2 simulations must store several data about the used mesh and the cloud
of particles (approximately ten particle by element in 3d). Comparing with
classical FEM solvers which only stores mesh data, when only one computer
is used, there is a much stronger restriction in terms of problem-size for
PFEM-2. Consequently, a distributed-memory approach to run on multi-node
architectures is quickly needed.

The parallel numerical framework developed uses as basis the library
libMesh. For a detailed description of libMesh see Kirk [8]; here some
of the fundamental concepts are addressed. libMesh is an object-oriented
library written in C++ to solve FEM problems with adaptive refinement and
coarserning (AMC) which performs the communication between nodes through
the standard MPI (Message Passing Interface). Several libraries are also included
in the suite, but the main ones are PETSc[11] for the solution of linear systems on
parallel platforms and METIS[12] and ParMETIS[13], which implement a domain-
decomposition based on graph partitioning schemes for serial or distributed
meshes respectively.

Critical to any implementation of distributed computing is the methodology
used to distribute the global computational task to the local processor resources.
In numerical simulation, tasks are generally aligned with integration points on
a body in space and so dividing physical space may be used to parallelize
a problem. That strategy is adopted by most FEM parallel implementations

HPCLatAm 2013 - Page 149

through domain-decomposition methodology, where some problem domain is
geometrically divided into sub-domains which can then be distributed across
the available computational resources. The sub-domains exchange data with each
other through their boundaries.

On the other hand, particle methods has a natural parallelism due to force
calculations and position updates can be simultaneously done for all particle.
Two main ideas can be exploited to achieve parallelism[14]. The former method,
which is called atom decomposition of the workload, distributes a fixed set of
particles over each processor no matter where they move in the simulation
domain. The latter method consists simply in the above mentioned spatial
decomposition where each processor computes only those particles that belong
to its geometrical domain. Applied to PFEM-2 the first produces inter-processor
communication overhead due to it is needed an updated copy of the entire
mesh in each processor. Therefore the domain-decomposition is also selected
for particles.

Regarding to update calculations, domain decomposition requires significant
communication between the sub-domains and/or some degree of zone duplication
to ensure accuracy. These zones along the segmented planes are called ghost
or virtual. For the typical first order strategy of FEM used by PFEM-2, the
zone simply refers to any immediately adjacent nodes. However, for a particles
trajectory calculation using large time-steps, this dimension may be extended
through several layers of elements, unless that when a particle leaves its sub-
domain is immediately sent to the neighbor processor to continue the calculation.
This approach adds inter-processor communication in the X-IVAS stage but it
eliminates the uncertainty of not knowing how many layers of ghost elements are
needed to perform the trajectory, without even mentioning the problems with
defining layers when unstructured meshes are used. Figure 1 presents a graphical
interpretation of the particle trajectory calculation. When a particle leaves its
initial sub-domain must be communicated to the neighbor processor instead of
continue in its initial processor which requires a number of ghost layers which
depends approximately on CFLp.

Fig. 1: Particle trajectory integration with sub-domain interchange.

HPCLatAm 2013 - Page 150

To implement particle interchange the strategy that has been selected
is the synchronous transference. This approach attends to minimize the
communication: each particle is packed in a buffer and is not transferred
until the particle loop ends. This strategy transfer particles and synchronize
simultaneously, contrary to asynchronous approach where each particle is
immediately sent to the CPU which is in control of the partition on the other
side of the partition boundary and a synchronization point is required to finish
the processors work. Because a particle can cross more than two sub-domains in
a time-step, an external loop is needed which breaks when no more particles are
transferred. Algorithm 2 presents a transcription of the code where the external
loop is observed alongside the loop over the particles and the stop condition
(when all processors have not more particles to transfer). The for loop, whose
iteration starts from the last particle analyzed to the last particle in the current
array, integrates the trajectory of each particle computing each sub-time step in
a while loop. There are four options at each sub-time step: the first case is the
particle has completed its sub-time step and it must calculate the rest of the
trajectory, in the second case the particle has left out the domain boundary and
its computation finishes, the third case is the particle has crossed to other sub-
domain (in whose case is queued to send it to the other processor) and finally
the last case is that the particle finishes the entire time step.

In any parallel calculation, the domain distribution must be done so that
the computations are balanced among the processors and the communication
resulting from the placement of adjacent elements to different processors is
minimized. The graph partitioning strategy implemented by the library Metis

can be used to successfully satisfy these conditions by first modeling the finite
element mesh by a graph, where each vertex v of the graph can have a associate
weight η(v) to declare the work-load over each element, and then partitioning it
into equal parts.

For the case of FEM simulations, a typical selection of the weights is η(v) =
ηn(v) = #dof e3, because the amount of computational task of each element
is directly proportional to the number of degrees of freedom. Then, due to the
current implementation uses only linear simplices, after a domain decomposition
each processor has approximately the same number of elements. At the beginning
of the simulation, each processor creates a fixed number of particles on each own
element, this guarantees that the initial load of particles over processors is also
balanced. However, when the simulation starts, this distribution can be modified
according to the particle movement itself but PFEM-2 solves this issue seeding
and removing particles preserving certain quantity Q : Qmin < Q < Qmax
of particles on each region (more detail can be found in [15]) and using these
strategies, the overall number of particles is kept approximately constant.

An approximately constant number of particles in each sub-domain only
guarantees a proper load of particle on each processor. However, due to the
adaptive integrator used, that balanced distribution does not ensure a balanced
work-load over each cpu. The parallel architecture in multi-core environments

3 #dof e: number of degrees of freedom of the element e

HPCLatAm 2013 - Page 151

Algorithm 2 - X-IVAS over distributed-memory

int ini_ip = 0;
while (1){

std::map <int ,std::vector <int > >particles2send;
np = vP.size();
for(unsigned int ip=ini_ip;ip<np;ip++){

int c=0, pid_send;
bool next_ddt = true;
while(next_ddt){

c = integrateSubStep(vP[ip],pid_send);
switch(c){

case 0:// substep complete
break;

case 1://out of domain
next_ddt = false;
break;

case 2://out of sub -domain
next_ddt = false;
particles2send[pid_send]. push_back(ip);
break;

case 3://time step complete
next_ddt = false;
break;

}
}

}
ini_ip=np;
next = particles2send.size();
Parallel ::max(next); //using MPI_Allreduce
if(!next) break; //no particles to send
ParticleCommunication ().interchangeParticles(particles2send ,vP); //using ←↩

MPI_Alltoallv
}

makes impossible a dynamic scheduling to distribute the work over processors
because each particle has not access to the entire domain data. A possible
solution for the work-load balancing of the X-IVAS stage on distributed-memory
is including information about the CFLh on the partition algorithm through
a weights array ηw(V) 6= ηn(V). It requires to know or to estimate the
solution previously which is impossible most of the cases, therefore an initial
simulation must be done where the weights are calculated, saved, and used in
the partitioning algorithm of a new run.

4 Distributed-Memory Tests

The evaluation of the distributed-memory implementation has been performed
on our local Beowulf cluster at the Research Center on Computational
Mechanics (CIMEC). The cluster has a server Intel i7-2600K 8Gb RAM and
six nodes i7-3930K 16Gb RAM connected by Gigabit Ethernet. In order to
not introduce disturbance on the results, technologies Intel Turbo Boost and
Intel Hyperthreading are deactivated on the processors, giving a total of 36
computational cores of 3.4 Ghz.

HPCLatAm 2013 - Page 152

4.1 Flow around a cylinder

The flow around a cylinder is a typical benchmark for incompressible flow. For
the three dimensional (3d) case the geometry used has the reference unit D = 1,
which is the diameter of the cylinder. The bounding box is [−2.5D, −5.5D, −5.5D]

to [2.5D, 15.5D, 5.5D], with the axial direction of the cylinder over the x axis,
and centered in [0 0 0]. The two dimensional (2d) case uses the same geometry
without the extrusion in the axial direction. Regarding to boundary conditions,
the test is run for the case Re = 1000, then U = [0; 1; 0] is imposed on the inflow
surface, fixed pressure on the outflow, slip condition on front and back surfaces
(3d cases), non-slip boundary condition on the cylinder, and U = [0; 1; 0] on the
upper and bottom surfaces. The initial fields are U = [0; 1; 0], p = 0 with the
fluid properties viscosity µ = 10−3 and density ρ = 1. Should be discussed that
the low number of Reynolds selected is because the possiblity of comparing with
experimental and numerical results and due to higher values requires turbulence
modeling.

The calculations in 2d are done using a mesh containing 88000 triangular
elements with 43000 nodes refined towards the cylinder, whereas the three
dimensional mesh used has 1.6 million of tetrahedral elements and 356000 nodes
also refined towards the cylinder.

The mesh refinement is designed in order to capture more accurately the fluid
forces over the cylinder. Due to the CFL number depends on the inverse of the
element size h, its value increases next to the cylinder. As was widely mentioned
above, the elements with large CFL will have more work-load in the X-IVAS
stage then, to balance this work-load can be done a partitioning weighting with a
factor proportional to CFLh. However this strategy unbalances the workload in
all other stages, where the number of elements (FEM calculations) or the number
of particles (projection and correction) must be balanced on each processor to
optimize the performance.

The formula used to calculate the weight of the vertex vj of the
partitioning graph (i.e. the weight of the element ej) is the same as which
calculates the number of sub-steps of each particle in the streamline integration
ηw(vj) = min{Nmax,max{Nmin,K×(CFLh)j}} where Nmax and Nmin are the
maximum and minimum number of steps required to move a particle along the
entire time-step and K is a parameter to adjust the minimal number of sub-steps
required to cross an element.

The performance of the parallelization solving the flow around a cylinder
2d with ∆t = 0.025 and CFLmax ≈ 15 is presented the Figure 2 which shows
the speed-up obtained by each stage of the method attending to the weighted
partitioning strategy selected. Table 1 presents a summary with the cpu-times
for each stage. Note that although ηw(v) improves the X-IVAS performance
around 4× comparing with η(v) (from 8x to 12x), the influence of this stage in
the total time is not very relevant, so the strategy with ηn(v) reaches the best
overall results. Must be noted that the size of the problem is not large enough
to reaches good performance with more than approximately 10 processors due
to communication overheads.

HPCLatAm 2013 - Page 153

(a) (b)

Fig. 2: Speed-Up comparison between partitioning weighted by number of degrees
of freedom ηn(v) (Figure 2a) and partitioning weighted by ηw(vj) (Figure 2b).
Case: flow around a cylinder in 2d.

In the three-dimensional case, a comparison between the current PFEM-2
implementation and the widely used CFD software OpenFOAM®is done. The
main idea is to force the time-step ∆t to be the maximum such that the solver be
stable and accurate. For the PFEM-2 results the CPU-times obtained treating
implicitly the viscous term (implicit diffusion as described at the beginning of
the paper) are reported. On the other hand, for OpenFOAM®results the solver
pimpleFoam is selected, which implements the segregated PIMPLE (merged
PISO-SIMPLE) algorithm, this is presented as the fastest for incompressible
flow because it allows to use time-steps larger than many the other solvers.
Symmetric linear equation systems are solved with pcg and non-symmetric with

Stage 1× 16× ηn(v) 16× ηw(v)

Acceleration 40.5[s] 5.81[s] 7.36[s]
X-IVAS 88.55[s] 11.02[s] 7.3[s]

Projection 42.87[s] 6.87[s] 7.83[s]
Implicit Correction 33.71[s] 11.58[s] 12.84[s]

Poisson 50.23[s] 16.44[s] 18.22[s]
Correction 34.73[s] 2.44[s] 3.09[s]

TOTAL 290.5[s] 52.93[s] 56.48[s]

Table 1: Comparison table for cputimes for the different PFEM-2 stages. Case:
flow around a cylinder in 2d.

HPCLatAm 2013 - Page 154

bicg, preconditioning both with algebraical multigrid. Absolute tolerances are
set to 10−6.

Table 2 presents the time-steps (∆t) used by each solver and shows the CFL
values that each simulation reaches. In pimpleFoam is set maxCo = 10 and the
time-step shown is an average of the instantaneous values used by the solver.
Both solvers are able to solve with longer time-steps but ∆t is selected checking
accuracy over drag and lift coefficient values (see [5]). Finally, in the mentioned
table, the speed-up and the total cpu-time to compute 1[s] of real time with
16 processors are reported. From the results can be concluded that, keeping a
similar parallel efficiency, PFEM-2 is around three times faster than the fastest
incompressible solver of OpenFOAM®.

Solver Re ∆t Comean Comax S16 CPU-time

PFEM-2 1000 0.05[s] ≈ 0.75 ≈ 8 10.45x 202.56[s]

OpenFOAM® 1000 ≈ 0.025[s] ≈ 0.5 ≈ 10 9.41x 613.98[s]

Table 2: Comparison table for time-steps with different solvers. Case: flow
around a cylinder in 3d. PFEM-2 partitioning with ηn(v)

The performance of the parallelization is presented in the Figure 3 which
shows the speed-up obtained by each stage of the method attending to the
weighting strategy selected. In this case the problem is large enough to reach
good speedup with more than 10 processors. The stage of velocity correction by
the pressure gradient is the most efficient because of its simplicity and the locality
of the data, and it reaches approximately S16 ≈ 14x−15x. The scalability of the
FEM stages, which is inherited from the libMesh implementation, obtains values
from S16 ≈ 10x to S16 ≈ 12x using the weighting formula ηn(v), whereas with
ηw(v) only reaches values from S16 ≈ 7x to S16 ≈ 9x indicating an imbalance of
the number of elements. X-IVAS stage is improved by ηw(v) but that does not
compensate the worsening of the remainder stages of the algorithm.

It must be emphasized that an important reason for the loss of efficiency with
a large number of processors in all PFEM-2 tests and OpenFOAM®is due to the
interconnection network used: Gigabit Ethernet is a multi-purpose architecture
then introduces several delays in a congested network as happens when many
nodes are computing and sending data. Dedicated architectures as Infiniband
should be employed in the future and their results should be compared[16].

5 Conclusions

The methodology for parallelizing PFEM-2 presented in this paper is an initial
approach towards massively parallel computations using the method to solve
both scalar and vectorial transport equations.

HPCLatAm 2013 - Page 155

(a) (b)

Fig. 3: Speed-Up comparison between partitioning weighted by number of degrees
of freedom ηn(v) (Figure 3a) and partitioning weighted by ηw(v) (Figure 3b).
Case: flow around a cylinder in 3d.

The domain decomposition through a graph partitioner using nodal weights
allows to select, depending on the problem to solve, which stage of the algorithm
will be solved more efficiently. Where X-IVAS stage dominates the calculation,
this is for scalar transport problems and flow problems with low Fourier
number (no implicit viscous-diffusion is needed), having a weights array with
values proportional to the elemental Courant number improves the parallel
performance of the streamline integration therefore of the overall simulation.
In incompressible flow problems with large Fourier the overall time is controlled
by FEM calculations due to add the implicit correction of the viscous diffusion,
so the weights array must contain values proportional to the number of degrees
of freedom of each element to optimize the performance.

Finally, the efficiency measured in terms of CPU time for reaching a given
final time in the simulation had shown important advantages of the present
method against OpenFOAM®. In this paper a factor approximately 3× was
obtained at the same level of accuracy, which place the method among the fastest.
Moreover if it is considered that currently the speed-up reached by PFEM-2 is
similar to that achieved by the CFD software and we are researching to improve
these marks.

6 Acknowledgments

The authors are grateful to CONICET, Universidad Nacional del Litoral
(CAI+D Tipo II 65-333 (2009)) and ANPCyT-FONCyT (grants PICT 1645

HPCLatAm 2013 - Page 156

BID (2008)) for their financial support. J. Gimenez gratefully acknowledges the
support of the argentinian Agencia Nacional de Promoción Cient́ıfica y Técnica
(ANPCyT) through a doctoral grant in the FONCyT program.

References

1. Donea, J., Huerta, A.: Finite Element Method for Flow Problems. Wiley,
Chichester England (1983)

2. Oñate, E., Idelsohn, S., Del Pin, F., Aubry, R.: The particle finite element method,
an overview. International Journal of Computational Methods 1 (2004) 267–307

3. Idelsohn, S., Oñate, E., Del Pin, F.: The particle finite element method a
powerful tool to solve incompressible flows with free-surfaces and breaking waves.
International Journal of Numerical Methods 61 (2004) 964–989

4. Idelsohn, S., Nigro, N., Limache, A., Oñate., E.: Large time-step explicit integration
method for solving problems with dominant convection. Comp. Meth. in Applied
Mechanics and Engineering 217-220 (2012) 168–185

5. Idelsohn, S.R., Nigro, N.M., Gimenez, J.M., Rossi, R., Marti., J.: A fast and
accurate method to solve the incompressible navier-stokes equations. Engineering
Computations 30-Iss:2 (2013) 197–222

6. Mackerle, J.: Object-oriented programming in fem and bem: a bibliography
(1990–2003). Advances in Engineering Software 35(6) (2004) 325 – 336

7. Sbalzarini, I., Walther, J., Bergdorf, M., Hieber, S., Kotsalis, E., Koumoutsakos,
P.: {PPM} – a highly efficient parallel particle–mesh library for the simulation of
continuum systems. Journal of Computational Physics 215(2) (2006) 566 – 588

8. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A C++ Li-
brary for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engi-
neering with Computers 22(3–4) (2006) 237–254 http://dx.doi.org/10.1007/

s00366-006-0049-3.
9. Sklar, D.M., Gimenez, J.M., Nigro, N.M., Idelsohn, S.R.: Thermal coupling in

particle finite element method - second generation. Mecánica Computacional
XXXI (2012) 4143–4152

10. Donea, J., Huerta, A.: Finite element method for flow problems. 1st edn. Springer-
Verlag. (2003)

11. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley,
M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2012)
http://www.mcs.anl.gov/petsc.

12. Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing 20 (1999)
359–392

13. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and
sparse matrix reordering. Parallel and Distributed Computing 48 (1998) 71–95

14. Kacianauskas, R., Maknickas, A., Kaceniauskas, A., Markauskas, D., Balevicius, R.:
Parallel discrete element simulation of poly-dispersed granular material. Advances
in Engineering Software 41 (2010) 52–63

15. Gimenez, J.M., Nigro, N.M., Idelsohn, S.R.: Improvements to solve diffusion-
dominant problems with pfem-2. Mecánica Computacional XXXI (2012) 137–155

16. Yeo, C., Buyya, R., Pourreza, H., Eskicioglu, R., Graham, P., Sommers, F.: Cluster
computing: High-performance, high-availability, and high-throughput processing
on a network of computers. In Zomaya, A., ed.: Handbook of Nature-Inspired and
Innovative Computing. Springer US (2006) 521–551

HPCLatAm 2013 - Page 157

