
Many-core Tile64 vs. Multi-core Intel Xeon:

Bioinformatics Performance Comparison
1

Myriam Kurtz
 1

, Francisco J. Esteban
 2

, Pilar Hernández
 3

, Juan Antonio Caballero
 4

,

Antonio Guevara
 5

, Gabriel Dorado
 6,*

, and Sergio Gálvez
 5,*

1 Dep. Informática, Campus Universitario, Universidad Nacional de Misiones, N3304 Misiones,

Argentina.

kurtz@fce.unam.edu.ar
2 Servicio de Informática, Edificio Ramón y Cajal, Campus Rabanales, Universidad de

Córdoba, 14071 Córdoba, Spain.

fjesteban@uco.es
3 Instituto de Agricultura Sostenible (IAS-CSIC), Alameda del Obispo s/n, 14080 Córdoba,

Spain.

phernandez@ias.csic.es
4 Dep. Estadística, Campus Rabanales C2-20N, Universidad de Córdoba, 14071 Córdoba,

Spain.

ma1camoj@uco.es
5 Dep. Lenguajes y Ciencias de la Computación, Campus de Teatinos, Universidad de Málaga,

29071 Málaga, Spain.

{galvez,guevara}@lcc.uma.es
6 Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia

Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain.

bb1dopeg@uco.es

Abstract. The performance of the many-core Tile64 versus the multi-core Xeon

x86 architecture on bioinformatics has been compared. We have used the pair-

wise algorithm MC64-NW/SW that we have previously developed to align nu-

cleic acid (DNA and RNA) and peptide (protein) sequences for the benchmark-

ing, being an enhanced and parallel implementation of the Needleman-Wunsch

and Smith-Waterman algorithms. We have ported the MC64-NW/SW (original-

ly developed for the Tile64 processor), to the x86 architecture (Intel Xeon Quad

Core and Intel i7 Quad Core processors) with excellent results. Hence, the evo-

lution of the x86-based architectures towards coprocessors like the Xeon Phi

should represent significant performance improvements for bioinformatics.

Keywords: RISC, SoC, tiles, cores, multithreading, threads, processes, dynam-

ic programming, cache memory.

* Authors who contributed to the project leadership.

HPCLatAm 2013, pp. 134-144 (full paper)
Session: CPU and Multicore Architectures and Applications

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

1 Introduction

The current computer engineering and High-Performance Computing (HPC) are

evolving very fast towards new Chip MultiProcessor (CMP) architectures, using dif-

ferent approaches. On the one hand, the General-Purpose Graphics Processing Units

(GPGPU) allow integrating thousands of processing units whose real computing pow-

er can be only exploited if particular programming methodologies are followed. On

the other hand, the many-core Central-Processing Units (CPU) like the Tile64 [1] and

Xeon Phi [2] represent the microprocessor state-of-the-art. There are also other ap-

proaches that range from heterogeneous processors, like the Cell Broadband Engine

(Cell BE), to architectures like the Epiphany, which is usually associated with Field-

Programmable Gate Array (FPGA) cards, and the Transcede family of hardware ar-

chitecture (formerly the PicoChip architecture) [3].

Since Tilera released the TilExpress-20G card, our research group has been study-

ing the performance of its Tile64 processor for bioinformatics algorithms [4, 5]. The

TilExpress-20G is a Peripheral Component Interconnect express (PCIe) card that can

be used on any desktop Personal Computer (PC) running the Linux operating system,

being controlled from such a host using a Command-Line Interface (CLI).

 The Tile64 contains 64 Reduced Instruction Set Computing (RISC) tiles (cores)

running at 866 MHz with three levels of cache memory, being interconnected through

a high-bandwidth network called intelligent Mesh (iMesh). Each tile can execute an

independent process, and they can communicate with each other through shared

memory, or using message passing and channel based proprietary libraries. The card

has 8 GB of Small Outline-Dual In-line Memory Modules (SO-DIMM) of Double

Data Rate 2 (DDR2) Synchronous Dynamic Random-Access Memory (SDRAM) that

can be used as shared and local memory, as well as Solid State Disk (SSD).

We have focused mainly on both pairwise and multiple sequence alignment algo-

rithms. Every algorithm has been written in C, compiled in the host using a cross-

compiler (tile-cc) and launched into the card using the PCIe bridge. Among these

developments, a variant of Needleman-Wunsch and Smith-Waterman algorithms [6],

adapted to the Tile64 characteristics and named ManyCore64-

NeedlemanWunsch/SmithWaterman (MC64-NW/SW) [7], showed performance gains

that ranged from 10x to 20x when compared with the fastest alternative. Currently, we

are developing and testing other algorithms, like the ClustalW [5], and the Basic Lo-

cal Alignment Search Tool (BLAST) specifically adapted to the Tile64 but, by now,

MC64-NW/SW is the one with the best gain in performance. However, this RISC

hardware technology from Tilera has not evolved significantly over the last four

years, whereas other companies like Intel have developed advanced commercial

products. That is the case of Intel Xeon Phi.

Therefore, we address the migration of the MC64-NW/SW from the Tile64 envi-

ronment based on processes to the Xeon environment based on threads. This is the

first stage in an eventual migration to the Xeon Phi coprocessor. We describe the

main characteristics of the Needleman-Wunsch algorithm, as well as the improve-

ments that we have introduced to take advantage of the Tile64 architecture. The main

steps to migrate the C code from the process-oriented approach to the thread-oriented

HPCLatAm 2013 - Page 135

one are explained in this work. The performance results using several comparison

charts are shown with the corresponding conclusions. Any aspects relative to the

power consumption or operating voltages are out of the scope of this work, and there-

fore have not been considered.

2 Alignment of Sequences

One of the main research areas in bioinformatics is the comparison of nucleic acid

(DNA and RNA) and peptide (protein) sequences. Indeed, aligning and analyzing

such sequences allows to build dendrograms or phylogenetic trees, as well as to iden-

tify identities and differences among them, which can be useful to design molecular

markers for breeding purposes and for identifying Protected Designations of Origin

(PDO). A computational alignment of sequences (considered as strings) tries to match

pairs of nucleotide or amino acid residues (characters) following a score function

whose final value must be maximized. From a biological point of view, mismatches

correspond to residue changes, whereas gaps correspond to insertions or deletions

(indels). For instance, a variation in the DNA sequence that affects a single base is

called a Single Nucleotide Polymorphism (SNP), as in the case of polymorphisms that

we have used for quality control of the olive oil PDO [8].

The score function can be supported by a substitution matrix that provides a mark

for each pair of characters: matches have a high score, whereas mismatches have a

negative or low score. This leads to alignments computed by Dynamic Programming

(DP) algorithms, like the Needleman-Wunsch (NW) and Smith-Waterman (SW). The

NW provides a global alignment; i.e., an alignment where both sequences are consid-

ered in their entire lengths. On the other hand, the SW identifies the single similar

region in both sequences whose alignment provides the greater score; i.e., a local

alignment. These algorithms have been improved in order to consider indels [6] and,

hence, to obtain alignments with more biological relevance. Due to the high compu-

ting power required by the DP aligners, many authors have implemented their own

versions of the algorithms using specific hardware [9, 10].

Nonetheless, the DP algorithms are neither the only nor the most used approach to

align sequences. The heuristics applies the biological knowledge to develop alignment

algorithms that produce high-quality results in much less time under particular condi-

tions, usually involving very similar sequences. These algorithms are mainly applied

to very large sequences [11] or to large sets of long sequences [12]. Finally, other

widespread bioinformatics tools, such as the BLAST [13] and ClustalW [14] apply

both heuristic/probabilistic and DP methods. For example, the BLAST uses a heuris-

tic to filter data, in order to decrease the amount of it on which to apply the SW algo-

rithm.

2.1 A Parallel Approach: MC64-NW/SW

To estimate the potential of the Tile64 many-core processor, we implemented the

algorithm MC64-NW/SW, which is a parallel version of the NW and SW algorithms.

HPCLatAm 2013 - Page 136

Fig. 1. Graphical description of the FastLSA parallel execution on the Tile64.

As the actual implementations of NW and SW are relatively similar, we will focus

on NW only in this section. To align the sequences A and B with lengths n and m

respectively, the original NW algorithm executes two phases: i) it creates a score

Dynamic Programming Matrix (DPM) whose size is n×m; and ii) it traverses the

DPM linearly to find out the actual alignment. Therefore, the first phase has a quad-

ratic complexity both in time and memory space, whereas the second phase has a

linear complexity. The MC64-NW integrates the FastLSA variant of NW [15] in or-

der to overcome the huge memory requirements and, at the same time, to allow the

alignment of long sequences. A FastLSA execution is represented in Fig. 1.

 To parallelize the first phase, the DPM is divided into submatrices or blocks of

size k×k, so that the content of each block can be calculated by a tile: this is named a

job. Once the top row and left column of a submatrix is available (obtained from the

previous job completion or from the very first row and column initialization), a new

job can be launched independently of any other running jobs. In turn, when a subma-

trix is completely calculated, only the last row and column are stored in the memory

(eventually allowing a new job execution), discarding the submatrix content to free

memory. The result is a grid cache; i.e., a sparse DPM where only one column and

row are stored from every k. Therefore, the number of blocks/jobs into which the

DPM is divided is [n/k] × [m/k] (see Fig. 1), and thus, the total number of cells stored

in the grid cache is 2k × [n/k] × [m/k]. Other details of the FastLSA are explained in

[15], with Fig. 1 showing the job distribution and, in turn, the content of every cell.

It is important to note that not every tile can work from the very beginning: when

the algorithm starts, only the job at position (1,1) can be computed by a single tile

using the very first row and column of the previously initialized DPM. Afterwards,

two jobs (2,1) and (1,2) can be computed in parallel by two tiles, using the results of

the previous one and the initialization of the DPM. The conclusion is that the number

of parallel jobs increases linearly and the DPM is created following a wavefront.

HPCLatAm 2013 - Page 137

Thus, the full power of the system is achieved when the number of parallel jobs

reaches the number of available tiles. The same happens at the end of the DPM gener-

ation. As a consequence, there is a tradeoff when choosing the best k value: the great-

er the k, the lower grid cache size, but the later that every tile is put to work, and vice

versa.

The MC64-NW/SW uses a tile as the main controller to initialize the grid cache

and the queue of jobs. In addition, the controller spawns the worker processes (one

per tile) and controls the parallel execution, by sending jobs and receiving their re-

sults. As shown in the Fig. 1, the number of actual tiles available to work is reduced

from 64 to 59, since one is used as a controller, and four tiles are used for internal

hardware tasks performed by the Linux kernel. Once the grid cache has been generat-

ed, the second phase starts at the bottom-right corner of the DPM and ends at its top-

left corner, thus being named the backwards stage. To connect these two corners/cells,

a linear path is followed throughout the DPM, depending on the content of the cells.

 As the grid cache is stored, instead of the DPM, the submatrices where the path

passes through must be recalculated. Thus, in this second phase, only a few submatri-

ces must be recalculated: max(n, m) in the best case, and n + m – 1 in the worst sce-

nario. This process is completely linear and it is performed by a single tile.

3 MC64-NW/SW in a x86 Multicore Architecture: MT-NW/SW

 Migrating the MC64-NW/SW algorithm written in C to a x86 multi-core platform

is not straightforward, mainly because the former uses the iLib proprietary library for

communication, synchronization and process execution. There are two main choices

to substitute every iLib function call: message passing or shared memory. In general,

it is not a good approach to execute each worker on a different process for a x86 muti-

core architecture, because this may limit the shared memory capabilities. In addition,

using the shared memory provides better results when there are not many concurrent

accesses to the same memory, being this our case. Furthermore, this choice suits well

with our future goal of reusing the new implementation for testing the Xeon Phi com-

puting power: to take the most out of each Xeon Phi core, at least two threads must be

executed to fulfill its hyper-threading capabilities [2]. Hence, the shared memory,

threads and mutexes were selected. Three main changes have been made in the

MC64-NW/SW to migrate it into the corresponding threads version (called MT-

NW/SW, where MT stands for Many Threads):

• Process spawn has been replaced by thread creation and initialization.

• Message passing has been replaced by mutex access to shared memory.

• Global variables have been encapsulated using an object-oriented-like program-

ming methodology.

We have used the C language for the MT-NW/SW development, instead of any

other advanced language (as C++) because, as stated above, we want to implement

this same algorithm in other platforms like the Xeon Phi, and C has become a de facto

standard for the emergent hardware architectures. The main drawback when adapting

HPCLatAm 2013 - Page 138

the algorithm from processes to threads has been to correctly manage the variables

declared in the global scope. We used global variables in the MC64-NW/SW to store

the progress of each job. This was found to be a good approach, because these varia-

bles are used throughout the C functions and an intensive usage of parameters is

avoided. In addition, as the processes do not share the same runtime environment,

there is no clash among the global variables stored in different processes (Tile64 al-

lows sharing memory by means of passing messages with pointers to shared

memory). Unfortunately, using threads implies that any global variable is visible by

any thread, so a different methodology must be adopted. To solve this problem, we

decided to simulate by hand the internals of an object-oriented compiler [16]. Basical-

ly, the state of a thread was encapsulated into a structure (like in an object), and a

pointer to it was passed as a parameter to each function where the “concept of this

makes sense”. Finally, the iLib functions have been replaced by new ones with the

same functionality by means of mutexes. The resulting code of the MT-NW/SW is

equivalent and as readable as that of the MC64-NW/SW.

4 Results

Several tests of the MC64-NW/SW running on 59 tiles [7] were compared against

the MT-NW/SW using two different x86 environments:

1. Xeon Quad Core 2.0 GHz, 8 GB RAM DDR2 (quad-channel), running CentOS 5.3

(Dell Precision T5400). Two tests were carried out using 2 and 4 threads; thus, the

relationship between a thread and a core was always one-to-one.

2. i7 3770 3.4 GHz (3.9 GHz in turbo mode), 8 GB RAM DDR3, running Ubuntu

12.2 (HP Pavilion p6-2307). Four tests were carried out using 2, 4, 6 and 8 threads.

An additional test with a single thread was carried out as a reference. The i7 pro-

cessor has four cores with two hyper-threading channels; therefore, using eight

threads takes the most out of it, though its scalability was not linear when more

than four threads are used.

With a simple calculation, it could be assumed that the top theoretical computing

power of the Xeon Quad should be 4 × 2.0 GHz = 8.0 GHz, whereas that of the i7

3770 should be 8 × 3.9 GHz = 31.2 GHz. Likewise, the total theoretical computing

power of the Tile64 should be 59 × 0.866 GHz = 51.09 GHz. Of course, this provides

a measure for the power of the processors, but it does not take into account some oth-

er features, like the cache memories, bridges to the main memory, RAM specifica-

tions, etc. Therefore, it could be expected that, in the best scenario, the Tile64 should

run at 6.39x when compared to the Xeon Quad, and at 1.64x when compared to the i7

3770.

For this comparison, different k-values and sequences with different lengths were

used for each test. The Table 1 shows the k-value that provided the fastest execution

for each test and sequence length. The symbols ❷ and ❹

represent the executions on

the Xeon Quad core environment with two and four threads, respectively, whereas the

symbols

①, ②, ④, ⑥ and ⑧ represent the executions on the i7 with 1, 2, 4, 6 and 8

HPCLatAm 2013 - Page 139

threads, respectively. The symbol T64 represents the execution on the TilExpress-

20G card using 59 tiles. For example, this table shows that using a Xeon Quad Core

with only two threads to align sequences of 80 kb in length, the best k-value was

1,000, requiring 73,24 MB to store the grid cache [7]. From this table can be inferred

that the best k-value was nearly the same when the MT-NW/SW is executed on the

Xeon, no matter if two or four threads are used but, in the case of the i7 processor, as

the number of threads increases, lower values of k usually produced better results.

 The Tile64 behaved similarly to i7: it produced better results with low k values,

because they allowed putting to work every tile in a shorter time.

Table 1. Best k-value for each executed test.

k

Length (kb)

10 50 100 200 300 400 500 750 1,000 1,250 1,500 1,750 2,000 3,000 5,000

0.5 ②④
⑥⑧

❷❹

① T64

1 ②④
⑥⑧

❷❹

①

T64

2 ⑥⑧ ②

❷❹

T64

④ ①

5 ⑥ ④⑧

❷❹
T64

② ①

10 ❷❹

T64

⑧ ④⑥ ①②

20 ❷ ❹ ⑥T64 ④⑧ ①②

30 ❷❹
T64

②⑥
⑧

①④

40 ❷❹ ⑥⑧

T64

①②④

50 ❷ ❹

T64

②④⑥
⑧

①

60 ❷ ❹

T64

④⑧ ①②⑥

70 ❷❹

T64

⑧ ①②④
⑥

80 ❹

T64

⑥⑧

❷

①②④

90 ❹

T64

❷ ②④⑥
⑧

①

100 T64 ❹ ②④⑧

❷

①⑥

150 ⑧ ⑥

❷❹

T64

①② ④

200 ❷ ①④⑥

❹

T64 ②⑧

250 ❷ ❹
T64

② ①④⑥
⑧

300 ⑥⑧

❹

T64 ①②

❷

④

400 ❹

T64

②⑧

❷

①④⑥

500 T64 ② ❹ ①④⑥
⑧

❷

750 T64 ①②④
⑥⑧

❷❹

1,000 T64 ①②④
⑥⑧

❷❹

HPCLatAm 2013 - Page 140

The best execution times are shown in Figs. 2 and 3, where each group of three

bars represents the time taken to align a pair of sequences with a particular length,

using the three different environments. In turn, each bar is divided into two parts,

being the dark one the time required to execute the first phase of the algorithm (whose

complexity is quadratic), and the light one the time spent in the execution of the se-

cond phase (with linear complexity). The Fig. 2 shows that the performance of the

Tile64 environment was worse than those for any x86 environment when the two

phases of the algorithm were considered. However, for sequences longer than 60 kb,

the Tile64 executed the first phase faster than the Xeon Quad with four threads. Clear-

ly, the second phase took more time in the Tile64 because it was executed by a single

tile whose computing power was near one third of that of a single core/thread in the

Xeon Quad. On the other hand, with sequences longer than 100 kb, the Fig. 3 shows

that the Tile64 executed faster than the Xeon Quad, even when including the time

consumed in the second phase, and the gain achieved using the many-core technology

increased as the sequences to align became longer. Even more, the second phase took

more and more time to be executed in the Xeon Quad because the first phase finished

quicker with bigger k-values but, at the same time, the higher a k-value, the more time

was spent in the second-phase execution.

Fig. 2. Execution times for sequences with length from 0.5 kb to 100 kb.

Fig. 3. Execution times for sequences with length from 150 kb to 1,000 kb.

0

5

10

15

20

25

30

T
im

e
 (

se
co

n
d

s)

Length (kb)

Tile64 59 cores Phase 2

Tile64 59 cores Phase 1

Xeon 4 threads Phase 2

Xeon 4 threads Phase 1

i7 8 threads Phase 2

i7 8 threads Phase 1

0

500

1,000

1,500

2,000

2,500

T
im

e
 (

se
co

n
d

s)

Length (kb)

Tile64 59 cores Phase 2

Tile64 59 cores Phase 1

Xeon 4 threads Phase 2

Xeon 4 threads Phase 1

i7 8 threads Phase 2

i7 8 threads Phase 1

HPCLatAm 2013 - Page 141

The empirical comparisons between the Tile64 and the Xeon Quad when running

the MC64-NW/SW and MT-NW/SW algorithms showed that the expected 6.39x gain

was not achieved even with large sequences of 1,000 kb, where only an approximate

2x was obtained when considering exclusively the first phase. Therefore, the Tile64

behaved three times slower than theoretically expected. The main two reasons for this

are:

1. The algorithm cannot take the most from every tile from the very beginning, but

when the length of the wavefront matches the number of tiles. As more tiles are

present, more time elapses until all of them are working.

2. The motherboards that integrate the x86 processors are more advanced and mature

than that of the TilExpress-20G.

The assumption that the theoretical computing power of the Tile64 could be 1.64x

when compared to the i7 3770 was nearly as optimistic as in the case of the Xeon

Quad. Thus, the Tile64 executed the algorithm even slower than the i7 3770 in any

test, with a performance that ranged from <50% (when aligning sequences with a

length lower than 100 kb), up to 65% (when aligning the largest pair of sequences

with a length of 1,000 kb). Actually, in such a case, the Tile64 was not three times

slower than expected (as in the comparison against the Xeon Quad) because the factor

1.64x calculated above assumed an ideal one-to-one relationship between threads and

cores in the i7 3770, which was not the case (this processor has only four cores with

hyper-threading).

5 Conclusions and Future Perspectives

The analysis of the tests carried out in this work shows a clear advantage of the

new Complex Instruction Set Computing (CISC) technology over the tested RISC

one. This is evident even in the case of MC64-NW/SW, an algorithm that behaves

extremely well in Tile64 in terms of speed. On the other hand, it should be taken into

account the cheaper i7 3770 platform versus the expensive TilExpress-20G one.

 However, from a retrospective point of view, the algorithms developed for the

Tile64 processor performed very fast when compared with other technologies in the

past. Therefore, our next work is to test the MT-NW/SW on an Intel Xeon Phi-

coprocessor PCIe card, integrating 60 cores with four hyper-threading channels each

and 8 GB of DDR5. With such a work we want to find out if the Xeon Phi technology

boosts the performance –when compared to other current technologies– as well as

Tile64 did six years ago. To do this, we need to proceed with another migration in

order to take advantage of the particular characteristics of this new coprocessor. In

particular, we are developing a variant to take the most out of the Xeon vectorization

capabilities and, at the same time, we are applying a new approach to launch immedi-

ately the four threads of each core, just when it starts a job. Depending on the perfor-

mance achieved, more accurate algorithms could be developed in order to achieve, for

example, contig assemblies with a higher quality when dealing with de novo sequenc-

HPCLatAm 2013 - Page 142

ing, BLAST executions with parameter values that allow more in-depth searching,

more accurate dendrograms, etc.

Acknowledgements. We are grateful to Tilera for providing hardware and software

tools <http://www.tilera.com>. This work was supported by “Ministerio de Economía

y Competitividad” (MINECO grants AGL2010-17316 and BIO2011-15237-E) and

“Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria” (MINECO

and INIA RF2012-00002-C02-02); “Consejería de Agricultura y Pesca” (041/C/2007,

75/C/2009 and 56/C/2010) and “Consejería de Economía, Innovación y Ciencia”

(AGR-7322) of “Junta de Andalucía”; “Grupo PAI” (AGR-248); and “Universidad de

Córdoba” (“Ayuda a Grupos”), Spain.

References

1. S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L.

Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger,

N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, “TILE64 - Processor: A

64-Core SoC with Mesh Interconnect,” presented at the ISSCC 2008, 2008.

2. “Parallel Programming and Optimization with Intel® Xeon PhiTM Coprocessors”. Colfax

International, 2013.

3. A. Vajda, “Programming Many-Core Chips”. New York: Springer, 2011.

4. S. Gálvez, D. Díaz, P. Hernández, F. J. Esteban, J. A. Caballero, and G. Dorado, “Next-

Generation Bioinformatics: Using Many-Core Processor Architecture to Develop a Web

Service for Sequence Alignment,” Bioinformatics, vol. 26, no. 5, pp. 683–686, 2010.

5. F. J. Esteban, D. Díaz, P. Hernández, J. A. Caballero, G. Dorado, and S. Gálvez, “Direct

approaches to exploit many-core architecture in bioinformatics,” Future Gener. Comput.

Syst., vol. 29, no. 1, pp. 15–26, 2013.

6. O. Gotoh, “An improved algorithm for matching biological sequences,” J. Mol. Biol., vol.

162, no. 3, pp. 705–8, 1982.

7. D. Díaz, F. J. Esteban, P. Hernández, J. A. Caballero, G. Dorado, and S. Gálvez, “Parallel-

izing and optimizing a bioinformatics pairwise sequence alignment algorithm for many-

core architecture,” Parallel Comput., vol. 37, no. 4–5, pp. 244–259, 2011.

8. A. Castillo, P. Pascual, E. Rodríguez, D. Díaz, M. G. Claros, J. Falgueras, S. Gálvez, G.

Dorado, and P. Hernández, “Genomic approaches for olive oil quality control,” in Plant

Genomics European Meetings, Tenerife, Spain, 2007.

9. Y. Liu, B. Schmidt, and D. L. Maskell, “CUDASW++2.0: enhanced Smith-Waterman pro-

tein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD ab-

stractions,” BMC Res. Notes, vol. 3, p. 93, 2010.

10. M. Farrar, “Striped Smith-Waterman speeds database searches six times over other SIMD

implementations,” Bioinformatics, vol. 23, no. 2, pp. 156–61, 2007.

11. A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg,

“Alignment of whole genomes,” Nucleic Acids Res., vol. 27, no. 11, pp. 2369–2376, 1999.

12. M. Brudno, C. Do, G. Cooper, M. F. Kim, E. Davydov, E. D. Green, A. Sidow, and S.

Batzoglou, “LAGAN and multi-LAGAN: Efficient tools for large-scale multiple alignment

of genomic DNA,” Genome Res., vol. 13, pp. 721 – 731, 2003.

13. S. F. Altschul, W. Gish, W. Miller, E.-M. Myers, and D. J. Lipman, “Basic local alignment

search tool,” J Mol Biol, vol. 215, pp. 403–410, 1990.

HPCLatAm 2013 - Page 143

14. M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam,

F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G.

Higgins, “Clustal W and Clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–

2948, 2007.

15. A. Driga, P. Lu, J. Schaeffer, D. Szafron, K. Charter, and I. Parsons, “FastLSA: A Fast,

Linear-Space, Parallel and Sequential Algorithm for Sequence Alignment,” Algorithmica,

vol. 45, no. 3, pp. 337–375, 2006.

16. M. Siff and T. Reps, “Program generalization for software reuse: from C to C++,” in Pro-

ceedings of the 4th ACM SIGSOFT symposium on Foundations of software engineering,

New York, NY, USA, 1996, pp. 135–146.

HPCLatAm 2013 - Page 144

