
Encrypting video streams using OpenCL code on-

demand 

Juan P. D’Amato
1,2

, Marcelo Vénere
1
 

1PLADEMA, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la  Provincia 

de Buenos Aires .  
2Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Ciudad Autó-

noma de Buenos Aires, Argentina 

 

Abstract. The amount of multimedia information transmitted through the web 

is very high and increasing. Generally, this kind data is not correctly protected, 

since users do not appreciate the information that images and videos may con-

tain. In this work, we present an architecture for managing safely multimedia 

transmission channels. The idea is to encrypt and encode images or videos in an 

efficient and dynamic way. The main novelty is the use of on-demand parallel 

code written in OpenCL. The algorithms and data structure are known only at 

communication time what we suppose increases the robustness against possible 

attacks. We conducted a complete description of the proposal and several per-

formance tests with different known algorithms. 
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1 Introduction 

Recent advances in technology and communications have led to the uncontrolled 

raising of multimedia data consumption through the WEB. These advances also are 

companied by a radically change in the way of delivering and accessing data. Today, 

there are many applications in many areas such as High-definition TV, home automa-

tion, video-conferencing, among many others, which are accessed using different 

devices, from smart-phones to high-performance PCs. This context has favored the 

unsafe access, fraud, attack and robbery of this data. 

 

Unfortunately, in transmission and multimedia processing, the amount of data to be 

transmitted is prioritized against security; no matter that these data are highly confi-

dential and personal. It can be argued that current known platforms as OpenSSL or 

SRTP cover these aspects, using known encryption schemes. But these schemes are 

inefficient for image/video transmission; they have been designed for generic uses 

and do not always consider the different user processing capabilities. They also have 

not considered the new ways of storing data such as clouds [14] where the data host, 

which is not the data owner, can eventually expropriate and manipulate data. A criti-
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cal case is imaging repositories usually called PACS, which usually have many users 

visualizing information [11]. 

 

 

Fig. 1. Proposed Architecture 

These performance, distribution and adaptability to different devices issues have 

motivated our proposal. The idea is to develop a platform that cans adaptive select 

algorithms and encryption keys for each new connection in accordance with 

processing capabilities. At the same time, it is ensured that the host does not know 

beforehand how data is encoded. To let these algorithms run efficiently, they are 

coded in OpenCL which is a standard for high performance computing. These algo-

rithms, along with the encryption keys are distributed as a script key, concept that we 

have called active keys. 

 

In order to increase data reliability, it is proposed to separate the host that stores the 

keys from the encryption mechanism; so a third participant is included, an active key 

server responsible for managing such keys. New and more robust encryption algo-

rithms, as long as, visualizing and encoding methods can be included, generating a 

enriched strategies database. Throughout the paper, we present the proposed architec-

ture and some performance results obtained from image processing. A security analy-

sis was not necessary, as we propose to use known and validated algorithms. 

2 Background 

There are many studies and reviews related to multimedia data encryption. Some 

works such as [15] suggest encrypting data using classic algorithms such as AES or 

DES; scheme known as ‘naive algorithm’. SRTP, presented in [5] as well as some 

versions of DTV, apply this kind of solution. These families of strategies are very 
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inefficient, because the algorithms used are generic and they have been designed for 

small blocks of data.   

When large volumes of data transmissions must be processed, such as images and 

video, some authors propose to partition the data and process them in parallel [10]. In 

some cases, graphics cards (GPUs) are used to obtain encryption in real time (about 

30 frames per second). Other solutions propose extending classical video coding algo-

rithms, such as MPEG, adding an encryption step [6,13]. These solutions that com-

bine encoding with encryption are called Joint Video Compression Encoding (JVCE). 

Many recent works are variations on this idea [9]. 

As it's called in [7], these proposals have some limitations and there is not one 

scheme that can meet all specific requirements. Some solutions are tied to specific 

hardware platforms and they cannot run on any device. In other cases, the algorithms 

used are pre-defined and do not take into account the characteristics of the communi-

cation, such as image size, processing speed, among others, causing inefficient use of 

resources. 

The last issue and perhaps the one we consider the most serious is that the encryp-

tion technique is generally known. This condition allows data to be decoded if at-

tacked, even using brute force [8]. To resolve similar issues, in the work of [12] is 

introduced the idea of ‘encryption on demand’, who proposes that the encryption is 

done using encryption keys within a JavaScript (JS). This script is downloaded from a 

server and it is known only during communication time. This scheme increases the 

security of the data, but the process is very slow just because JS is interpreted. 

In this work, we propose to use OpenCL API for running the encryption algorithms 

in parallel, both on CPUs or GPUs. Below, some features of OpenCL that were taken 

into account in this proposal are discussed.  

3 OpenCL API 

The advent of multi-core platforms and massive parallelism with GPUs bring the 

advantage (and disadvantage if they're used in a malicious manner) to increase com-

puting capacity per unit time. This increased capacity calculation can be exploited 

especially in applications where data can be partitioned and processed in parallel. 

Indeed, several studies have proposed encrypt or encode data using GPUs, achieving 

good performance in real time even for high quality video [4]. 

On the other hand, the proposed solutions often use CUDA as a development plat-

form, limiting its function to PCs (desktops or clusters). Another alternative to 

achieve parallelism on different platforms is OpenMP that runs on Linux, Windows, 

iOS and Android, but it has the limitation of using only pre-compiled code. 

The other parallelization technology is OpenCL proposed by Khronos Group, that 

has quickly gained popularity and it is being also adopted in Web browsers. This 

standard uses a programming language ANSI C, which is loaded dynamically and 

compiled into one device. Each program is instantiated in a method or kernel, which 

runs in multiple threads within a computing unit. Each kernel accesses memory spac-

es in the three levels, as shown in Figure 2. 
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Fig. 2. OpenCL memory scheme 

Although it has not all the facilities that have other platforms such as CUDA, the 

biggest advantage of OpenCL is portability, either GPU or CPU. This advantage let us 

distribute efficient and mobile code, where algorithms can be transmitted and com-

piled on devices with different features. Surely, as it's a standard under development 

there are certain capabilities not supported by all architectures, but we understand it is 

a limitation that will be overcome with time. 

4 Methodology 

As in any secure communication scheme, there exists the transmitter, the channel 

and the receiver of the communication. For a new data request, multimedia in this 

case, both transmitter and receiver should define the data structure and the encryption 

mechanism. 

In this paper, we extend this basic configuration including a third participant called 

the active key provider In this architecture, each new communication between the 

parties also involves an algorithm encryption/decryption request to the server, which 

is responsible for selecting a suitable algorithm and corresponding keys for the en-

cryption. These algorithms are coded as a script in ANSI C for OpenCL and they 

should be safely transmitted to the participants. 

On the client side, after receiving the code, the platform will prepare to process 

with an OpenCL module. The necessary kernels are created and compiled, memory 

spaces are allocated if required and finally the kernels are executed. The incoming 

data, e.g. a frame from a video, are loaded and processed in the module before send-

ing through the net. In the same way, the receiver loads and compiles decoding 

HPCLatAm 2013 - Page 125



scripts, and processes the data stream as it comes. When communication finishes, the 

channels are closed and the active keys are removed. 

 

The encryption steps are shown in Figure 3: 

 

Fig. 3. : Server-host encryption scheme 

So far, we have given the general idea of this proposal. Now, we explain how the 

server should manage the algorithms, and then we describe their structure. Although 

we have focused on encryption, the same schema can also be applied to compress 

videos and pictures. 

4.1 Active Keys Management 

The key management in a cryptography environment involves the generation, ex-

change, store and use of passwords. This task is critical for safety and it is one of the 

most complex issues to address. In the case of active keys, where the encryption me-

chanism is now conformed by the key plus the algorithm, these tasks should take into 

account particular features of the architecture and the data domain. 

Regarding key generation, it is important to generate them in a safe and pseudo-

random way. For example, a key with many 0s is unacceptable and good generating 

strategies are required. In our architecture, keys can be generated on both the client 

and server side. This step will be explained in the next section. 

Respect to the keys exchange, some of the known schemes as Diffie-Hellman Key 

Exchange protocol, Key Wrap or RSA [3] can be applied. In this paper we do not 

propose any particular one, since it can be adapted to the architecture. Regarding sto-

rage and use of keys, our proposal is further differentiated from existing ones. The 

database containing the algorithms can grow as new algorithms are included, as the 

one proposed in [1]. Thanks to this, at the time of a request, the server can choose 

among plenty of algorithms, reducing vulnerability to attacks. The new techniques 

must be implemented with a certain code template and they should also include a 

description of auxiliary structures; both are described in the next section.  
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It's important to remark that although OpenCL limits access to resources such as 

hard disks or peripherals, it does not limit memory access, making it vulnerable to out 

of range exploits. To ensure that the algorithms incorporated to the database are valid, 

they must be subjected to a series of tests with different data types and sizes. 

4.2 Keys and structures generation  

One of the most important steps before encryption is the algorithms parametriza-

tion. In general, the encryption keys used, either symmetric or asymmetric, are long 

numbers having 128, 256 or more bits. Other algorithms, such as AES, also require 

structures such as Rijndael dictionaries [2], conversion functions, among others. 

Faced with a new communication, these structures can be generated either server side 

or client side.  

If the data are generated on server-side, it is proposed that these be must be in-

cluded in the algorithm script as a constant structure with values from a base type 

(char or integer). To let the server automatically include the structures within the 

script, we propose to use ''tags'' in the code. These tags indicate which parameters 

should be generated and each one should correspond to a generation method. It can 

also be added a random seed, used for inner methods.  In Table 1, we suggest some 

parameters and their tags included in the platform. 

Table 1. : Algorithms parameters with their corresponding tags 

Cipher Parameters Size (Bits) Tag 

AES Key 

Rijndae box 

Inverse Rijndae box 

128 

2048 

2048 

Symkey 

Rijndae 

iRijndae 

DES Key 512 Symkey 

RSA Encrypt Key 

Decrypt Key 

192 

192 

ASymkeyEnc 

ASymkeyDec 

BlowFish Key 192 Symkey 

<common> Random Seed 128 seed 

  

If these or other data are generated on the client side, the script tags can be omitted, 

but now the script should include itself the generation method. In this case, the 

amount of required memory should be specified and data should be computed during 

the initialization stage. According to the OpenCL API, these dynamic structures must 

be allocated in the global memory of the device.   

As OpenCL does not provide a simple way to manipulate dynamic variables from 

the kernels, we propose to create and reference then through a simple interface with 

an allocation table provided by our architecture. The allocation table has a fixed size, 

generally of some megabytes, and it's initialized when the OpenCL module starts. We 
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also include some methods like ‘malloc’ and ‘calloc’ defined in clmemory.h header 

file. These methods can be used from the kernels code.  

We consider that memory is split in several memory blocks, each one correspond-

ing to a variable (in this case, the maximum supported are 20 variables) as  it is sup-

posed to store simple structures as look-up tables or dictionaries. The allocation table 

also indicates extra-information, as ouputSize and debugging messages to be read 

from the platform. It can also store user variables, to use between kernels. This ver-

sion supports only supports single-thread allocation. 

The structure of the allocation table looks like Figure 4. 

 

Fig. 4. Allocation Table 

Choosing whether to parameterized kernels, on the server or on the client side has 

its advantages and disadvantages depending on the application. The advantage of 

initializing structures on server-side leads to already runnable scripts, reducing initia-

lization time on the client. In turn, as the data are kept in constant memory space, 

scripts are more efficient. The main disadvantage is that server could be overloaded. 

Initializing structures on the client side (transmitter and receiver), reduces server 

overhead, but has some limitations respect to key generation and shared data. In this 

case, the server should always include some common initialization data (for example 

a global timer) to be used as seed that is shared by both sides of communication. 

4.3 Scripts organization 

The scripts should contain at least two methods: init and encrypt.  The init method 

initializes structures in the host memory and it’s called only once, after receiving the 

key from the server. If script was already instantiated in the server and do not use 

local variables, this step can be omitted.  

The encrypt method is called after each new frame issent.  The encryption method 

receives as parameter an input (src) and an output (dst), that could not be the same 
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variable, the buffer size and the allocation table reference. Below it is the template 

structure for an encryption ‘script’ that works both for client-side initialization or 

server-side initialization. 

// data initialized on server side  

constant word symmetrickey[4]   = {0Xb..... };  

// unit for memory allocation.  

#include “clmemory.h” 

 

kernel void init(AllocationTable mt)  

{  

  // host data initialization  

   global char* myVariable = malloc( XXX bytes , mt); 

   generateStructure( myVariable ); 

   // Store reference to be accessed from other kernel 

   mt->references[0] = myVariable;  

}   

 

kernel void encrypt(global char src, global char dst, int 

buffersize, AllocationTable mt)   

{    

 // to access locally initialized structures  

 global char* auxStructure = mt->references[0]  ; \\ 

 // Encrypt Code 

   ....  

}  

Finally, the C code-like that implements the whole encryption scheme is presented. 

/*  SERVER */   

onNewRequest() 

 ak = chooseAlgorithm() ;   

 keys = generateKeys(ak) ; 

 replaceTags(ak,  keys) ;  

 secureSend(ak) ;  

/*   HOST */   

// Call once, at the begining  

onStartSending   

 ak = readAlgorithmFromServer(); 

  AllocationTable mt  =openCL.initializeAT([Mem Size]);    

 openCL.compileKernel(ak);   

 //buffer size is equal to frame size   

 openCL.allocateBuffer( size );   

 // Initialize local structures \\ 

 openCL.callKernel('init'); 
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// For each frame  

onSending  

frame = readFrame();  

if (frame) 

{ 

 openCL.copyHostToDevice(frame);   

  openCL.callKernel(„encrypt‟); 

 openCL.copyFromDevice(outFrame); 

 send(outFrame) ; \\   

} 

This scheme could be extended to work like a pipe and filter architecture. In this 

case, all algorithms should implement the same interface and the architecture must 

call one kernel after the other.  

5 Experimental results 

Several implementation and performance analysis were performed. First compati-

bility features running with OpenCL were evaluated.  After it, performance tests with 

different encryption techniques using sequences of still images were conducted, both 

with CPU and GPU.  Here, we only considered encryption/decryption times, omitting 

the communication times that depend on the application. 

We used different algorithms, such as Blowfish, AES, DES and RSA. The test 

platform, the clients and the server were implemented in C++. For communication, 

UDP sockets with Boost library were used. Encryption algorithms were implemented 

in ANSI C for OpenCL and stored and transmitted as plain text. Keys and structures 

were generated only once, and were used the same in all tests. We used a six-core PC 

at 3.0 GHz with 4 MB of RAM and a GTX 550 GPU.     

5.1 Implementation Analysis 

Each device has different OpenCL capabilities: number of cores, threads and 

memory spaces size. At the same time, there are different versions of this platform: 

ATI, NVIDIA, Intel among others, that should comply with the standard. As OpenCL 

still does not support recursion, algorithms have some limitations.  

In this analysis, we intend to test the capability of running algorithms in different 

configurations. For this analysis, we took into account the amount of memory re-

quired, the amount of lines of each algorithm, the constant memory space used, the 

compilation time and the maximum call-stack depth. The algorithms compositions are 

shown in Table 2. We used the OpenCL’s NVIDIA version.  
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Table 2. Table memory spaces and lines of code 

Cipher KeySize Code 

Lines 

Constant 

Space 

Compilation 

Time (ms) 

Callstack 

Depth 

AES 128 bits 250 844 Kbytes 2.7 3 

DES 192 bits 512 1294 Kbytes 3.5 3 

BlowFish 256 bits 310 252 Bytes 5.3 2 

RSA 128 bits 1200 6 Kbytes 131 8 

 

As expected, compilation times were proportional to the length and complexity of 

the code. In some cases, compilation times were very high, and depending of GPUs 

platform (using older GPUs than the one proposed), the RSA algorithm with a ''call-

stack depth'' of 8 o more could not be compiled. It is clear that the greater complexity 

of the algorithms, the longer the compiling time. 

In another test, Firefox and WebCL were used with a plug-in developed by Nokia 

®, as shown in Figure 5. We implemented a simplified version of the client module; 

the algorithms were included within the web-page code. The compilation and execu-

tion times through the browser were very similar to those obtained in implementing 

C++ thanks that this step is carried out by the API. On the other side, the data copy 

times between CPU-GPU were 50% higher.  

 

Fig. 5. : Screenshot of AES encryption running in a WebBrowser 

5.2 Performance Analysis 

In the following tests, we calculated the rate of processing images measured as 

Megabits per second (Mbps) obtained both CPU and GPU. We encrypted a sequence 
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of 30 images in uncompressed format with different resolutions of 1024x640, 

1280x800 and 1920x1080 with 3 bytes per pixel. The input data is partitioned into 

blocks of 8192 bits for parallel processing. Table 3 summarizes the results of differ-

ent implementations. 

Table 3. : Throughput in Mbps obtained for different algorithms in CPU & GPU 

 AES DES blowfish RSA 

CPU (6 Cores) 240 144 736 4 

GPU 1920 368 8192 20 

 

The obtained results let us affirm that AES and Blowfish can be used in real-time 

encryption. On the other side, DES and RSA were not fast for multimedia data en-

cryption; even they were running in parallel. Comparing to [4], the obtained through-

put of AES is about 5 times slower; but our proposal is more generic as it supports 

many different algorithms. 

5.3 Multi-Step Analysis 

Finally, a hybrid encoding-encryption test was performed with a JPEG2000 image 

encoder in OpenCL. This encoder was implemented inside the platform (not transmit-

ted) and applied for each frame. It uses default parameters such as 32x32 pixels block 

size. As the image is encoded in the GPU, memory swaps are reduced. Starting from a 

compressed frame with this codec, we then applied DES and AES algorithms for 

encrypting the image. The time required for each step is shown in Table 4.  

Table 4.   Times in milliseconds for encoding + encryption 

 Encoding Encryption 

Image resolu-

cion 

Orig 

Size 

Encoding 

Time (ms) 

Compressed 

Size 

AES 

(ms) 

DES 

(ms) 

1024x640 1912kb 181 844kb 2.7 67 

1280x800 3001kb 243 1294kb 3.5 84 

1920x1024 6076kb 321 2434kb 5.3 131 

 

In these tests, it was observed that most of the processing is taken by the encoder. 

Even though it is not a good configuration for real-time, it shows us that the architec-

ture can work as a JVCE scheme. 

6 Conclusions 

In this paper we presented a new architecture for efficient and reliable transmission of 

large data volumes. Although originally tailored to video images, the same can be 

applied to any other domain where encryption algorithms must be chosen according 
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to the problem. The architecture is still in development and we are evaluating new 

algorithms and carrying out some analysis in strength against attacks. 

Preliminary results are promising. On the one hand, it allowed us to decouple the 

data structure from encryption algorithms, reducing the vulnerability of the communi-

cation channel. At the same time, we obtained a high processing rate thanks to using 

OpenCL on GPUs for the development. The idea of having algorithms coded in script 

gives us a greater number of possibilities in the ways of encrypting. As future work, 

we will explore the dynamic generation of algorithms, from the combination of basis 

algorithms and we also pretend to extend the architecture to incorporate 3D images, 

used in medical applications. 
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