
Encrypting video streams using OpenCL code on-

demand

Juan P. D’Amato
1,2

, Marcelo Vénere
1

1PLADEMA, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia

de Buenos Aires .
2Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Ciudad Autó-

noma de Buenos Aires, Argentina

Abstract. The amount of multimedia information transmitted through the web

is very high and increasing. Generally, this kind data is not correctly protected,

since users do not appreciate the information that images and videos may con-

tain. In this work, we present an architecture for managing safely multimedia

transmission channels. The idea is to encrypt and encode images or videos in an

efficient and dynamic way. The main novelty is the use of on-demand parallel

code written in OpenCL. The algorithms and data structure are known only at

communication time what we suppose increases the robustness against possible

attacks. We conducted a complete description of the proposal and several per-

formance tests with different known algorithms.

Keywords: Parallelism & GPU, Encryption, on demand

1 Introduction

Recent advances in technology and communications have led to the uncontrolled

raising of multimedia data consumption through the WEB. These advances also are

companied by a radically change in the way of delivering and accessing data. Today,

there are many applications in many areas such as High-definition TV, home automa-

tion, video-conferencing, among many others, which are accessed using different

devices, from smart-phones to high-performance PCs. This context has favored the

unsafe access, fraud, attack and robbery of this data.

Unfortunately, in transmission and multimedia processing, the amount of data to be

transmitted is prioritized against security; no matter that these data are highly confi-

dential and personal. It can be argued that current known platforms as OpenSSL or

SRTP cover these aspects, using known encryption schemes. But these schemes are

inefficient for image/video transmission; they have been designed for generic uses

and do not always consider the different user processing capabilities. They also have

not considered the new ways of storing data such as clouds [14] where the data host,

which is not the data owner, can eventually expropriate and manipulate data. A criti-

HPCLatAm 2013, pp. 122-133 (full paper)
Session: GPU Architecture and Applications

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

cal case is imaging repositories usually called PACS, which usually have many users

visualizing information [11].

Fig. 1. Proposed Architecture

These performance, distribution and adaptability to different devices issues have

motivated our proposal. The idea is to develop a platform that cans adaptive select

algorithms and encryption keys for each new connection in accordance with

processing capabilities. At the same time, it is ensured that the host does not know

beforehand how data is encoded. To let these algorithms run efficiently, they are

coded in OpenCL which is a standard for high performance computing. These algo-

rithms, along with the encryption keys are distributed as a script key, concept that we

have called active keys.

In order to increase data reliability, it is proposed to separate the host that stores the

keys from the encryption mechanism; so a third participant is included, an active key

server responsible for managing such keys. New and more robust encryption algo-

rithms, as long as, visualizing and encoding methods can be included, generating a

enriched strategies database. Throughout the paper, we present the proposed architec-

ture and some performance results obtained from image processing. A security analy-

sis was not necessary, as we propose to use known and validated algorithms.

2 Background

There are many studies and reviews related to multimedia data encryption. Some

works such as [15] suggest encrypting data using classic algorithms such as AES or

DES; scheme known as ‘naive algorithm’. SRTP, presented in [5] as well as some

versions of DTV, apply this kind of solution. These families of strategies are very

HPCLatAm 2013 - Page 123

inefficient, because the algorithms used are generic and they have been designed for

small blocks of data.

When large volumes of data transmissions must be processed, such as images and

video, some authors propose to partition the data and process them in parallel [10]. In

some cases, graphics cards (GPUs) are used to obtain encryption in real time (about

30 frames per second). Other solutions propose extending classical video coding algo-

rithms, such as MPEG, adding an encryption step [6,13]. These solutions that com-

bine encoding with encryption are called Joint Video Compression Encoding (JVCE).

Many recent works are variations on this idea [9].

As it's called in [7], these proposals have some limitations and there is not one

scheme that can meet all specific requirements. Some solutions are tied to specific

hardware platforms and they cannot run on any device. In other cases, the algorithms

used are pre-defined and do not take into account the characteristics of the communi-

cation, such as image size, processing speed, among others, causing inefficient use of

resources.

The last issue and perhaps the one we consider the most serious is that the encryp-

tion technique is generally known. This condition allows data to be decoded if at-

tacked, even using brute force [8]. To resolve similar issues, in the work of [12] is

introduced the idea of ‘encryption on demand’, who proposes that the encryption is

done using encryption keys within a JavaScript (JS). This script is downloaded from a

server and it is known only during communication time. This scheme increases the

security of the data, but the process is very slow just because JS is interpreted.

In this work, we propose to use OpenCL API for running the encryption algorithms

in parallel, both on CPUs or GPUs. Below, some features of OpenCL that were taken

into account in this proposal are discussed.

3 OpenCL API

The advent of multi-core platforms and massive parallelism with GPUs bring the

advantage (and disadvantage if they're used in a malicious manner) to increase com-

puting capacity per unit time. This increased capacity calculation can be exploited

especially in applications where data can be partitioned and processed in parallel.

Indeed, several studies have proposed encrypt or encode data using GPUs, achieving

good performance in real time even for high quality video [4].

On the other hand, the proposed solutions often use CUDA as a development plat-

form, limiting its function to PCs (desktops or clusters). Another alternative to

achieve parallelism on different platforms is OpenMP that runs on Linux, Windows,

iOS and Android, but it has the limitation of using only pre-compiled code.

The other parallelization technology is OpenCL proposed by Khronos Group, that

has quickly gained popularity and it is being also adopted in Web browsers. This

standard uses a programming language ANSI C, which is loaded dynamically and

compiled into one device. Each program is instantiated in a method or kernel, which

runs in multiple threads within a computing unit. Each kernel accesses memory spac-

es in the three levels, as shown in Figure 2.

HPCLatAm 2013 - Page 124

Fig. 2. OpenCL memory scheme

Although it has not all the facilities that have other platforms such as CUDA, the

biggest advantage of OpenCL is portability, either GPU or CPU. This advantage let us

distribute efficient and mobile code, where algorithms can be transmitted and com-

piled on devices with different features. Surely, as it's a standard under development

there are certain capabilities not supported by all architectures, but we understand it is

a limitation that will be overcome with time.

4 Methodology

As in any secure communication scheme, there exists the transmitter, the channel

and the receiver of the communication. For a new data request, multimedia in this

case, both transmitter and receiver should define the data structure and the encryption

mechanism.

In this paper, we extend this basic configuration including a third participant called

the active key provider In this architecture, each new communication between the

parties also involves an algorithm encryption/decryption request to the server, which

is responsible for selecting a suitable algorithm and corresponding keys for the en-

cryption. These algorithms are coded as a script in ANSI C for OpenCL and they

should be safely transmitted to the participants.

On the client side, after receiving the code, the platform will prepare to process

with an OpenCL module. The necessary kernels are created and compiled, memory

spaces are allocated if required and finally the kernels are executed. The incoming

data, e.g. a frame from a video, are loaded and processed in the module before send-

ing through the net. In the same way, the receiver loads and compiles decoding

HPCLatAm 2013 - Page 125

scripts, and processes the data stream as it comes. When communication finishes, the

channels are closed and the active keys are removed.

The encryption steps are shown in Figure 3:

Fig. 3. : Server-host encryption scheme

So far, we have given the general idea of this proposal. Now, we explain how the

server should manage the algorithms, and then we describe their structure. Although

we have focused on encryption, the same schema can also be applied to compress

videos and pictures.

4.1 Active Keys Management

The key management in a cryptography environment involves the generation, ex-

change, store and use of passwords. This task is critical for safety and it is one of the

most complex issues to address. In the case of active keys, where the encryption me-

chanism is now conformed by the key plus the algorithm, these tasks should take into

account particular features of the architecture and the data domain.

Regarding key generation, it is important to generate them in a safe and pseudo-

random way. For example, a key with many 0s is unacceptable and good generating

strategies are required. In our architecture, keys can be generated on both the client

and server side. This step will be explained in the next section.

Respect to the keys exchange, some of the known schemes as Diffie-Hellman Key

Exchange protocol, Key Wrap or RSA [3] can be applied. In this paper we do not

propose any particular one, since it can be adapted to the architecture. Regarding sto-

rage and use of keys, our proposal is further differentiated from existing ones. The

database containing the algorithms can grow as new algorithms are included, as the

one proposed in [1]. Thanks to this, at the time of a request, the server can choose

among plenty of algorithms, reducing vulnerability to attacks. The new techniques

must be implemented with a certain code template and they should also include a

description of auxiliary structures; both are described in the next section.

HPCLatAm 2013 - Page 126

It's important to remark that although OpenCL limits access to resources such as

hard disks or peripherals, it does not limit memory access, making it vulnerable to out

of range exploits. To ensure that the algorithms incorporated to the database are valid,

they must be subjected to a series of tests with different data types and sizes.

4.2 Keys and structures generation

One of the most important steps before encryption is the algorithms parametriza-

tion. In general, the encryption keys used, either symmetric or asymmetric, are long

numbers having 128, 256 or more bits. Other algorithms, such as AES, also require

structures such as Rijndael dictionaries [2], conversion functions, among others.

Faced with a new communication, these structures can be generated either server side

or client side.

If the data are generated on server-side, it is proposed that these be must be in-

cluded in the algorithm script as a constant structure with values from a base type

(char or integer). To let the server automatically include the structures within the

script, we propose to use ''tags'' in the code. These tags indicate which parameters

should be generated and each one should correspond to a generation method. It can

also be added a random seed, used for inner methods. In Table 1, we suggest some

parameters and their tags included in the platform.

Table 1. : Algorithms parameters with their corresponding tags

Cipher Parameters Size (Bits) Tag

AES Key

Rijndae box

Inverse Rijndae box

128

2048

2048

Symkey

Rijndae

iRijndae

DES Key 512 Symkey

RSA Encrypt Key

Decrypt Key

192

192

ASymkeyEnc

ASymkeyDec

BlowFish Key 192 Symkey

<common> Random Seed 128 seed

If these or other data are generated on the client side, the script tags can be omitted,

but now the script should include itself the generation method. In this case, the

amount of required memory should be specified and data should be computed during

the initialization stage. According to the OpenCL API, these dynamic structures must

be allocated in the global memory of the device.

As OpenCL does not provide a simple way to manipulate dynamic variables from

the kernels, we propose to create and reference then through a simple interface with

an allocation table provided by our architecture. The allocation table has a fixed size,

generally of some megabytes, and it's initialized when the OpenCL module starts. We

HPCLatAm 2013 - Page 127

also include some methods like ‘malloc’ and ‘calloc’ defined in clmemory.h header

file. These methods can be used from the kernels code.

We consider that memory is split in several memory blocks, each one correspond-

ing to a variable (in this case, the maximum supported are 20 variables) as it is sup-

posed to store simple structures as look-up tables or dictionaries. The allocation table

also indicates extra-information, as ouputSize and debugging messages to be read

from the platform. It can also store user variables, to use between kernels. This ver-

sion supports only supports single-thread allocation.

The structure of the allocation table looks like Figure 4.

Fig. 4. Allocation Table

Choosing whether to parameterized kernels, on the server or on the client side has

its advantages and disadvantages depending on the application. The advantage of

initializing structures on server-side leads to already runnable scripts, reducing initia-

lization time on the client. In turn, as the data are kept in constant memory space,

scripts are more efficient. The main disadvantage is that server could be overloaded.

Initializing structures on the client side (transmitter and receiver), reduces server

overhead, but has some limitations respect to key generation and shared data. In this

case, the server should always include some common initialization data (for example

a global timer) to be used as seed that is shared by both sides of communication.

4.3 Scripts organization

The scripts should contain at least two methods: init and encrypt. The init method

initializes structures in the host memory and it’s called only once, after receiving the

key from the server. If script was already instantiated in the server and do not use

local variables, this step can be omitted.

The encrypt method is called after each new frame issent. The encryption method

receives as parameter an input (src) and an output (dst), that could not be the same

HPCLatAm 2013 - Page 128

variable, the buffer size and the allocation table reference. Below it is the template

structure for an encryption ‘script’ that works both for client-side initialization or

server-side initialization.

// data initialized on server side

constant word symmetrickey[4] = {0Xb..... };

// unit for memory allocation.

#include “clmemory.h”

kernel void init(AllocationTable mt)

{

 // host data initialization

 global char* myVariable = malloc(XXX bytes , mt);

 generateStructure(myVariable);

 // Store reference to be accessed from other kernel

 mt->references[0] = myVariable;

}

kernel void encrypt(global char src, global char dst, int

buffersize, AllocationTable mt)

{

 // to access locally initialized structures

 global char* auxStructure = mt->references[0] ; \\

 // Encrypt Code

}

Finally, the C code-like that implements the whole encryption scheme is presented.

/* SERVER */

onNewRequest()

 ak = chooseAlgorithm() ;

 keys = generateKeys(ak) ;

 replaceTags(ak, keys) ;

 secureSend(ak) ;

/* HOST */

// Call once, at the begining

onStartSending

 ak = readAlgorithmFromServer();

 AllocationTable mt =openCL.initializeAT([Mem Size]);

 openCL.compileKernel(ak);

 //buffer size is equal to frame size

 openCL.allocateBuffer(size);

 // Initialize local structures \\

 openCL.callKernel('init');

HPCLatAm 2013 - Page 129

// For each frame

onSending

frame = readFrame();

if (frame)

{

 openCL.copyHostToDevice(frame);

 openCL.callKernel(„encrypt‟);

 openCL.copyFromDevice(outFrame);

 send(outFrame) ; \\

}

This scheme could be extended to work like a pipe and filter architecture. In this

case, all algorithms should implement the same interface and the architecture must

call one kernel after the other.

5 Experimental results

Several implementation and performance analysis were performed. First compati-

bility features running with OpenCL were evaluated. After it, performance tests with

different encryption techniques using sequences of still images were conducted, both

with CPU and GPU. Here, we only considered encryption/decryption times, omitting

the communication times that depend on the application.

We used different algorithms, such as Blowfish, AES, DES and RSA. The test

platform, the clients and the server were implemented in C++. For communication,

UDP sockets with Boost library were used. Encryption algorithms were implemented

in ANSI C for OpenCL and stored and transmitted as plain text. Keys and structures

were generated only once, and were used the same in all tests. We used a six-core PC

at 3.0 GHz with 4 MB of RAM and a GTX 550 GPU.

5.1 Implementation Analysis

Each device has different OpenCL capabilities: number of cores, threads and

memory spaces size. At the same time, there are different versions of this platform:

ATI, NVIDIA, Intel among others, that should comply with the standard. As OpenCL

still does not support recursion, algorithms have some limitations.

In this analysis, we intend to test the capability of running algorithms in different

configurations. For this analysis, we took into account the amount of memory re-

quired, the amount of lines of each algorithm, the constant memory space used, the

compilation time and the maximum call-stack depth. The algorithms compositions are

shown in Table 2. We used the OpenCL’s NVIDIA version.

HPCLatAm 2013 - Page 130

Table 2. Table memory spaces and lines of code

Cipher KeySize Code

Lines

Constant

Space

Compilation

Time (ms)

Callstack

Depth

AES 128 bits 250 844 Kbytes 2.7 3

DES 192 bits 512 1294 Kbytes 3.5 3

BlowFish 256 bits 310 252 Bytes 5.3 2

RSA 128 bits 1200 6 Kbytes 131 8

As expected, compilation times were proportional to the length and complexity of

the code. In some cases, compilation times were very high, and depending of GPUs

platform (using older GPUs than the one proposed), the RSA algorithm with a ''call-

stack depth'' of 8 o more could not be compiled. It is clear that the greater complexity

of the algorithms, the longer the compiling time.

In another test, Firefox and WebCL were used with a plug-in developed by Nokia

®, as shown in Figure 5. We implemented a simplified version of the client module;

the algorithms were included within the web-page code. The compilation and execu-

tion times through the browser were very similar to those obtained in implementing

C++ thanks that this step is carried out by the API. On the other side, the data copy

times between CPU-GPU were 50% higher.

Fig. 5. : Screenshot of AES encryption running in a WebBrowser

5.2 Performance Analysis

In the following tests, we calculated the rate of processing images measured as

Megabits per second (Mbps) obtained both CPU and GPU. We encrypted a sequence

HPCLatAm 2013 - Page 131

of 30 images in uncompressed format with different resolutions of 1024x640,

1280x800 and 1920x1080 with 3 bytes per pixel. The input data is partitioned into

blocks of 8192 bits for parallel processing. Table 3 summarizes the results of differ-

ent implementations.

Table 3. : Throughput in Mbps obtained for different algorithms in CPU & GPU

 AES DES blowfish RSA

CPU (6 Cores) 240 144 736 4

GPU 1920 368 8192 20

The obtained results let us affirm that AES and Blowfish can be used in real-time

encryption. On the other side, DES and RSA were not fast for multimedia data en-

cryption; even they were running in parallel. Comparing to [4], the obtained through-

put of AES is about 5 times slower; but our proposal is more generic as it supports

many different algorithms.

5.3 Multi-Step Analysis

Finally, a hybrid encoding-encryption test was performed with a JPEG2000 image

encoder in OpenCL. This encoder was implemented inside the platform (not transmit-

ted) and applied for each frame. It uses default parameters such as 32x32 pixels block

size. As the image is encoded in the GPU, memory swaps are reduced. Starting from a

compressed frame with this codec, we then applied DES and AES algorithms for

encrypting the image. The time required for each step is shown in Table 4.

Table 4. Times in milliseconds for encoding + encryption

 Encoding Encryption

Image resolu-

cion

Orig

Size

Encoding

Time (ms)

Compressed

Size

AES

(ms)

DES

(ms)

1024x640 1912kb 181 844kb 2.7 67

1280x800 3001kb 243 1294kb 3.5 84

1920x1024 6076kb 321 2434kb 5.3 131

In these tests, it was observed that most of the processing is taken by the encoder.

Even though it is not a good configuration for real-time, it shows us that the architec-

ture can work as a JVCE scheme.

6 Conclusions

In this paper we presented a new architecture for efficient and reliable transmission of

large data volumes. Although originally tailored to video images, the same can be

applied to any other domain where encryption algorithms must be chosen according

HPCLatAm 2013 - Page 132

to the problem. The architecture is still in development and we are evaluating new

algorithms and carrying out some analysis in strength against attacks.

Preliminary results are promising. On the one hand, it allowed us to decouple the

data structure from encryption algorithms, reducing the vulnerability of the communi-

cation channel. At the same time, we obtained a high processing rate thanks to using

OpenCL on GPUs for the development. The idea of having algorithms coded in script

gives us a greater number of possibilities in the ways of encrypting. As future work,

we will explore the dynamic generation of algorithms, from the combination of basis

algorithms and we also pretend to extend the architecture to incorporate 3D images,

used in medical applications.

7 References

1. Al-Husainy M. F. : A Novel Encryption Method for Image Security, International Journal of

Security and Its Applications v. 6:1, pp.1-8 (2012)

2. Daemen J. and Rijmen V. : The Design of Rijndael: AES - The Advanced Encryption Stan-

dard. Springer-Verlag, ISBN 3-540-42580-2 (2002).

3. Hellman M.: An Overview of Public Key Cryptography, IEEE Communications Magazine,

pp:42-49 (2002).

4. Iwai K., Nishikawa N., Kurokawa T.: Acceleration of AES encryption on CUDA GPU, In-

ternational Journal of Networking and Computing, v. 2:1, pp. 131-145 (2012).

5. McGrew D., Naslund M., Norman K., Blom R., Carrara E. and Oran D.: The Secure Real

time Transport Protocol (SRTP), Internet draft, (2001).

6. Meyer J. and Gadegast F.: Security Mechanisms for Multimedia Data with the Example

MPEG-1 Video, Project Description of SECMPEG, Technical University of Berlin, Germa-

ny (1995).

7. Liu F., Koenig H.:A survey of video encryption algorithms, Computers and Security, v.29:1,

pp. 3-15 (2010)

8. Nishikawa N., Iwai K. and Kurokawa T. Acceleration of the key crack against cipher algo-

rithm using CUDA (in Japanese). In IEICE technical report. Computer systems v. 109:168,

pp. 49-54 (2009).

9. Pande A. , Zambreno J.: The secure wavelet transform, Journal of Real-Time Image

Processing, Springer-Verlag, DOI 10.1007/s11554-010-0165-6 (2010)

10. Pieprzyk J. and Pointcheval D.: Parallel Authentication and Public-Key Encryption , The

Eighth Australasian Conference on Information Security and Privacy (ACISP 03), Ed.

Springer-Verlag, LNCS 2727, pp.383-401 (2003).

11. Rosenthal A., Mork, P. Li M.H., Stanford J. , Koester D. and Reynolds P. ; Cloud compu-

ting: a new business paradigm for biomedical information sharing. Journal of Biomedical

Informatics v.43, pp.342-353 (2010).

12. Samid G. , Encryption-On-Demand: Practical and Theoretical Considerations. IACR Cryp-

tology ePrint Archive 2008: 222 (2008)

13. Shin S. U., Sim K. S. and Rhee K. H.: A Secrecy Scheme for MPEG Video Data Using the

Joint of Compression and Encryption, 2nd International Workshop on Inf. Security, Kuala

Lumpur, Malaysia, Lecture Notes in Computer Science, v. 17, pp.191-201 (1999).

14. Subashini S. , Kavitha V. :A survey on security issues in service delivery models of cloud

computing, Journal of Network and Computer Applications, v.34:1, pp. 1-11 (2011)

15. Stinson D.R.: Cryptography Theory and Practice, CRC Press, Inc. (2002).

HPCLatAm 2013 - Page 133

