
Permutation Index and GPU to Solve efficiently

Many Queries

Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, Nora Reyes

LIDIC. Universidad Nacional de San Luis,
Ejército de los Andes 950 - 5700 - San Luis - Argentina
{omlopres, ncmiran, mpiccoli, nreyes}@ unsl.edu.ar

Abstract. Similarity search is a fundamental operation for applications
that deal with multimedia data. For a query in a multimedia database it
is meaningless to look for elements exactly equal to a given one as query.
Instead, we need to measure the similarity (or dissimilarity) between
the query object and each object of the database. The similarity search
problem can be formally defined through the concept of metric space,
which provides a formal framework that is independent of the application
domain. In a metric database, the objects from a metric space can be
stored and similarity queries about them can be efficiently answered. In
general, the search efficiency is understood as minimizing the number
of distance calculations required to answer them. Therefore, the goal is
to preprocess the dataset by building an index, such that queries can
be answered with as few distance computations as possible. However,
with very large metric databases is not enough to preprocess the dataset
by building an index, it is also necessary to speed up the queries by
using high performance computing, as GPU. In this work we show an
implementation of a pure GPU architecture to build the Pemutation
Index, used for approximate similarity search on databases of different
data nature. Our proposal is able to solve many queries at the same time.

1 Introduction

Due to an increasing interest in manipulating and retrieving multimedia data,
nowadays the problem of similarity searching receives much attention. The met-
ric space model is a paradigm that allows to model all the similarity search
problems. A metric space (X, d) is composed of a universe of valid objects X
and a distance function d : X×X → R+ defined among them. The distance func-
tion determines the similarity (or dissimilarity) between two given objects and
satisfies several properties which make it a metric. Given a dataset of | U |= n
objects, a query can be trivially answered by performing n distance evaluations,
but sequential scan does not scale for large problems. The reduction of number
of distance evaluations is important to achieve better results. Therefore, in many
cases preprocessing the dataset is a good option to solve queries with as few dis-
tance computations as is possible. An index helps to retrieve the objects from U
that are relevant to the query by making much less than n distance evaluations
during searches [1]. One of these indices is the Permutation Index [2].

HPCLatAm 2013, pp. 101-112 (full paper)
Session: GPU Architecture and Applications

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

Moreover, for very large metric database is not enough to preprocess the
dataset by building an index, it is also necessary to speed up the queries by
using high performance computing (HPC). In order to employ HPC to speedup
the preprocess of the dataset to obtain an index, and to answer posed queries,
the Graphics Processing Unit (GPU) represents a good alternative. The GPU is
attractive in many application areas for its characteristics, especially because of
its parallel execution capabilities and fast memory access. They promise more
than an order of magnitude speedup over conventional processors for some non-
graphics computations.

A GPU computing system consists of two basic components, the traditional
CPU and one or more GPUs (Streaming Processor Array). The GPU can be
considered as a manycores coprocessor able to support fine grain parallelism (a
lot of threads run in parallel, all of them collaborate in the solution of the same
problem) [3, 4]. GPU is different than other parallel architectures because it
shows flexibility in the local resources allocation to the threads.There are many
tools to program the GPU, CUDA is one of them. CUDA is a standard C/C++
extended by several keywords and constructs. Its programming model is SPMD
(Single Process-Multiple Data) with two main characteristics: the parallel work
through concurrent threads and the memory hierarchy.

In metric spaces, the indexing and query resolution are the most common
operations. They have several aspects that accept optimizations through the
application of HPC techniques. There are many parallel solutions for some metric
space operations implemented to GPU. Querying by k-Nearest Neighbors (k-NN)
has concentrated the greatest attention of researchers in this area, so there are
many solutions that consider GPU. In [5–9] differents proposal are made, all of
them are improvements to brute force algorithm (sequential scan) to find the
k-NN of a query object.

The paper is organized as follows: Section 2 describes all the previous con-
cepts necessary to understand our work (it is a magister thesis in progress) and
the state of art, Section 3 introduces the sequential version of Permutation Index,
Sections 4, 5, and 6 sketch the characteristics of our proposal and its empirical
performance. Finally, the conclusions and future works are exposed.

2 Previous Concepts

In this section, we explain the main concepts to develop this work.

2.1 Metric Space, Queries and Index

A metric space (X, d) is composed of a universe of valid objects X and a dis-
tance function d : X × X → R+ defined among them. The distance function
determines the similarity (or dissimilarity) between two given objects and sat-
isfies several properties such as strict positiveness (except d(x, x) = 0, which
must always hold), symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z)). The finite subset U ⊆ X with size n = |U |, is called
the database and represents the set of objects of the search space. The distance is
assumed to be expensive to compute, hence it is customary to define the search

HPCLatAm 2013 - Page 102

complexity as the number of distance evaluations performed, disregarding other
components. There are two main queries of interest [1, 10]: Range Searching and
the k-NN. The goal of a range search (q, r)d is to retrieve all the objects x ∈ U
within the radius r of the query q (i.e. (q, r)d = {x ∈ U/d(q, x) ≤ r}). In k-NN
queries, the objective is to retrieve the set k-NN(q)⊆ U such that | k-NN(q) |= k
and ∀x ∈ k-NN(q), v ∈ U ∧ v /∈ k-NN(q), d(q, x) ≤ d(q, v).

When an index is defined, it helps to retrieve the objects from U that are
relevant to the query by making much less than n distance evaluations during
searches. The saved information in the index can vary, some indices store a subset
of distances between objects, others maintain just a range of distance values. In
general, there is a tradeoff between the quantity of information maintained in the
index and the query cost it achieves. As more information an index stores (more
memory it uses), lower query cost it obtains. However, there are some indices
that use memory better than others. Therefore in a database of n objects, the
most information an index could store is the n(n − 1)/2 distances among all
element pairs from the database. This is usually avoided because O(n2) space is
unacceptable for realistic applications [11].

Proximity searching in metric spaces usually are solved in two stages: prepro-
cessing and query time. During the preprocessing stage an index is built and it is
used during query time to avoid some distance computations. Basically the state
of the art in this area can be divided in two families [1]: pivot based algorithms

and compact partition based algorithms. There is an alternative to “exact” sim-
ilarity searching called approximate similarity searching [12], where accuracy or
determinism is traded for faster searches [1, 10], and encompasses approximate

and probabilistic algorithms. The goal of approximate similarity search is to re-
duce significantly search times by allowing some errors in the query output. In
these algorithms one usually has a threshold ǫ as parameter, so that the retrieved
elements are guaranteed to have a distance to the query q at most (1 + ǫ) times
of what was asked for [13]. Probabilistic algorithms on the other hand state that
the answer is correct with high probability. Some examples are [14, 15]. In the
next section we detail a probabilistic method: Permutation Index [2].

2.2 GPGPU

Mapping general-purpose computation onto GPU implies to use the graphics
hardware to solve any applications, not necessarily of graphic nature. This is
called GPGPU (General-Purpose GPU), GPU computational power is used to
solve general-purpose problems [3, 4]. The parallel programming over GPUs has
many differences from parallel programming in typical parallel computer, the
most relevant are: The number of processing units, CPU-GPU memory structure

and Number of parallel threads.

Every GPGPU program has many basic steps, first the input data transfers
to the graphics card. Once the data are in place on the card, many threads can
be started (with little overhead). Each thread works over its data and, at the end
of the computation, the results should be copied back to the host main memory.
Not all kind of problem can be solved in the GPU architecture, the most suitable

HPCLatAm 2013 - Page 103

problems are those that can be implemented with stream processing and using
limited memory, i.e. applications with abundant parallelism.

The Compute Unified Device Architecture (CUDA), supported from the
NVIDIA Geforce 8 Series, enables to use GPU as a highly parallel computer
for non-graphics applications [3, 16]. CUDA provides an essential high-level de-
velopment environment with standard C/C++ language. It defines the GPU ar-
chitecture as a programmable graphic unit which acts as a coprocessor for CPU.
It has multiple streaming multiprocessors (SMs), each of them contains several
(eight, thirty-two or forty-eight, depending GPU architecture) scalar processors
(SPs). The CUDA programming model has two main characteristics: the parallel
work through concurrent threads and the memory hierarchy. The user supplies a
single source program encompassing both host (CPU) and kernel (GPU) code.
Each CUDA program consists of multiple phases that are executed on either
CPU or GPU. All phases that exhibit little or no data parallelism are imple-
mented in CPU. Contrary, if the phases present much data parallelism, they
are coded as kernel functions in GPU. A kernel function defines the code to be
executed by each thread launched in a parallel phase.

3 Sequential Permutation Index

Let P be a subset of the database U , P = {p1, p2, . . . , pm} ⊆ U , that is called
the permutants set. Every element x of the database sorts all the permutants
according to the distances to them, thus forming a permutation of P : Πx =
〈pi1 , pi2 , . . . pim〉. More formally, for an element x ∈ U , its permutation Πx of P
satisfies d(x,Πx(i)) ≤ d(x,Πx(i + 1)), where the elements at the same distance
are taken in arbitrary, but consistent, order. We use Π−1x (pij) for the rank of an
element pij in the permutation Πx. If two elements are similar, they will have a
similar permutation [2].

Basically, the permutation based algorithm is an example of probabilistic
algorithm, it is used to predict proximity between elements, by using their per-
mutations. The algorithm is very simple: In the offline preprocessing stage it
is computed the permutation for each element in the database. All these per-
mutations are stored and they form the index. When a query q arrives, its
permutation Πq is computed. Then, the elements in the database are sorted in
increasing order of a similarity measurement between permutations, and next
they are compared against the query q following this order, until some stopping
criterion is achieved. The similarity between two permutations can be measured,
for example, by Kendall Tau, Spearman Rho, or Spearman Footrule metrics [17].
All of them are metrics, because they satisfy the aforementioned properties. We
use the Spearman Rho metric because it is not expensive to compute and ac-
cording to the authors in [2] it has a good performance to predict proximity
between elements. The square of the Spearman Rho Sρ metric is defined as
Sρ(x, q) = Sρ(Πx, Πq) =

∑m
i=1 |Π

−1
x (pi)−Π−1q (pi)|

2.
At query time we first compute the real distances d(q, pi) for every pi ∈ P ,

then we obtain the permutation Πq, and next we sort the elements x ∈ U into
increasing order according to Sρ(Πx, Πq) (the sorting can be done incrementally,

HPCLatAm 2013 - Page 104

RangeQuery(element q, radius r, fraction f)
1. Let A[1, n] be an array of tuples and U = {x1, . . . , xn}
2. Compute Π−1

q

3. For i← 1 to n do A[i]←
〈

xi, Sρ(Πxi
, Πq)

〉

4. SortIncreasing(A) /* by second component of tuples */

5. For i← 1 to fn do
6. 〈x, s〉 ← A[i]
7. If d(q, x) ≤ r Then Report x

Algorithm 1: Range query of q with radius r in a permutation index, f DB fraction.

because only some of the first elements are actually needed). Then U is traversed
in that sorted order, evaluating the distance d(q, x) for each x ∈ U . For range
queries, with radius r, each x that satisfies d(q, x) ≤ r is reported, and for k-NN
queries the set of the k smallest distances so far, and the corresponding elements,
are maintained. Algorithm 1 shows the process for a range query. The efficiency
and the quality of the answer obviously depend on f . In [2], the authors discuss
a way to obtain good values for f .

4 GPU-CUDA Permutation Index

The Figure 1 shows the GPU-CUDA system to work with a permutation index:
the processes of indexing and querying. The Indexing process has two stages and
the Querying process four steps. In this last process, we pay special attention to
one step: the sorting. The next sections detail the characteristics of each process,
their steps and peculiarities.

Permutations Calculus

Approximate Query

database

Query

Approximate
Answer

Distances(O, P)

Distances(Query, P)

Footrule Distances

GPU-Qsort

Local-QS

Reducction(Merge)

KNN Query

!

!

Permutation Index(O)

!
 Where:

 O is dataset
 P is permutants set

Range Query

GPU

Fig. 1. Indexing and Querying in GPU-CUDA permutation index.

4.1 Building the Permutation Index

Building a permutation index in GPU involves at least two steps. The first step
calculates the distance among every object in database and the permutants. The
second one sets up the signatures of all objects in database, i.e. all object permu-
tations. The process input is the database and the permutants. At process end,
the index is ready to be queried. The idea is to divide the work in threads blocks,

HPCLatAm 2013 - Page 105

each thread calculates the object permutation according to a global permutants
set. In the first task (Distances(O,P)), the number of blocks will be defined
according of the size of the database and the number of threads per block which
depends of the quantity of resources required by each block. At the step end,
each threads block save in device memory its calculated distances. This stage
requires a structure of size m×n (m: permutants number and n: database size)
and an auxiliar structure of fixed size defined in the shared memory of block (It
stores the permutants, if the permutants size is greater than auxiliar structure
size, the process is repeated until all distances to permutants are calculated).
The second step (Permutation Index(O)) takes all calculated distances in the
previous step and determines the permutations of each object in database: its
signature. To stablish the object permutation, each thread considers an object
in database and sorts the permutants according to their distance. The output of
second step is the Permutation Index, which is saved in device memory. Its size
is n×m.

4.2 Solving Approximate Queries

The pemutation index allows to answer to all kinds of queries in approximated
manner. Queries can be “by range” or “k-NN”. This process implies four steps.
In the first, the permutation of query object is computed. This task is carried
out by so many threads as permutants exist. The next step is to contrast all per-
mutations in the index with query permutation. Comparison is done through the
Footrule distance, one thread by object in database. In the third step, it sorts
the calculated Footrule distances. As sorting methodology, we implement the
Quick-sort in the GPU, its characteristics are explained bellow. Finally, depend-
ing of query kind, the selected objects have to be evaluated. In this evaluation,
the Euclidean distance between query object and each candidate element is cal-
culated again. Only a database percentage is considered for this step, for example
the 10% (it can be a parameter). If the query is by range, the elements in the
answer will be those that their distances are less than reference range. If it is
k-NN query, once each thread computes the Euclidean distance, all distances are
sorted (using GPU-Qsort) and the results are the first k elements of sorted list.

Considering the sorting algorithm, we describe a parallel Quicksort algorithm
for GPU, called GPU-Qsort. The designed algorithm takes into account the
highly parallel nature of graphics processors (GPUs) and the CUDA capabilities
1.2 or higher. GPU-Qsort carries out the task into two stages: Local-Qsort and
Merge-Reduction. The first stage, Local-Qsort, has a data sequence as input
and its output are n sorted subsequences. Each subsequence is ordered by a
threads block according to iterative quicksort. Therefore, there are n threads
blocks, where the number of threads by block is fix and is determined in relation
to the required resources by block. Each block chooses a local pivot (it has
to belong to input data list of block) and divides the data sequence in two
subsequences: one has the elements smaller than pivot and another has the
elements greater or equal than pivot. The pivot is the median among three
elements of data subsequence: the first, middle and last element [18]. Each block
works independently of other blocks eliminating the need of synchronization

HPCLatAm 2013 - Page 106

among threads of different blocks. In base to the selected pivot, all elements lower
than the pivot are moved to a position to the pivot’s left, and the greater or equal
are shifted to the pivot’s right. The task is made by using shared memory and
each thread can determine itself the position for its element in shared structure
(using CUDA atomic functions).

The process is applied iteratively over two subsequences. It is possible if it
uses an stack. The stack saves all subsequences that still remain to be sorted.
When there are two ready subsequences to work, one is selected and the another
is pushed in the stack. If one subsequence is sorted, the subsequence in the top
of stack is selected to work. The iterative process ends when the stack is empty
and the list is sorted. When the number of elements in the sequence is lower
than eight, it is sorted in sequential manner, because the process overhead is too
large compared to sequence size. At the end of stage, each one of n blocks copies
its sorted subsequence to device memory. The output is n sorted subsequence.
For second stage of GPU-Qsort, Merge-Reduction, its input is n sorted list
and the output is whole sorted sequence. This phase makes a reduction, the
reduction operation is a merge of sorted lists. A block merges two list at a
time. In consequence, log2n iterations are necessary to find the final result. This
stage requires ⌈n

2 ⌉ blocks with thirty two threads per each and an auxiliary
structure in device memory. In both stages, different techniques are used to
optimize the performance, they are the use of shared memory, anticipatory copies
and coalesced access to global memory.

5 Solving Parallely Many Queries

In large-scale systems such as Web Search Engines indexing multimedia content,
it is critical to deal efficiently with streams of queries rather than with single
queries. Therefore, it is not enough to speed up the time to answer only one
query, but it is necessary to leverage the capabilities of the GPU to parallely
answer several queries. So we have to show how to achieve efficient and scalable
performance in this context. We need to devise algorithms and optimizations
specially tailored to support high-performance parallel query processing in GPU.
GPU has characteristics of software and hardware which allow us to think in to
solve many approximated queries in parallel. The represented system in Figure
1 is modified and it is shown in Figure 2. In this, it can be observed that the
permutation index is built once and then is used to answer many queries.

In order to answer parallely many approximate queries, GPU receives the
queries set and it has to solve all of them. Each query, in parallel, applies the
process explained in 4.2, therefore the number of needed resources for this is
equal to the resources amount to compute one query multiplied the number of
queries solved in parallel. The number of queries to solve in parallel is determined
according to the GPU resources mainly its memory. If q are parallel queries, m
the needed memory quantity per query and i the needed memory by permutation
index, q ∗m+ i is the total required memory to solve q queries in parallel.

Once the q parallel queries are solved, the results are sent from the GPU to
the CPU through a single transfer via PCI-Express.

HPCLatAm 2013 - Page 107

Permutations Calculus

Approximate Query

database

Approximate
Answers

!

GPU

Queries
Distances(Query, P)

Footrule Distances

GPU-Qsort

KNN Q Range Q

Query 0

Distances(Query, P)

Footrule Distances

GPU-Qsort

KNN Q Range Q

Query (n-1)

. . .

Fig. 2. Solving q queries in GPU-CUDA permutation index.

Solving many queries in parallel involves carefully manage the blocks and
their threads. At the same time, blocks of different queries are accessed in par-
allel. Hence it is important a good administration of threads: which query it
is solved and which database element it is responsible. The task is possible by
establishing a relationship among Thread Id, Block Id, Query Id, and Database

Element.

6 Experimental Results

Our experiments considered different database sizes: 4KB, 29KB, and 84KB, on a
metric database consisting of English words and using the Levenshtein distance,
also called edit distance (that is, the minimum number of character insertions,
deletions, and substitutions needed to make two strings equal). The analysis was
made for three GeForce GPU whose characteristics (Global Memory, SM, SP,
Clock rate, Compute Capability) are GTX330: (512MB, 6, 48, 1.04GHz, 1.2),
GTX520MX: (1024MB, 1, 48, 1.8GHz, 2.1) and GTX550Ti: (1024MB, 4, 192,
1.96GHz, 2.1). The CPU is an Intel core i3, 2.13 GHz and 3 GB of memory. The
results are expressed in Speed up (Sp = TimeCPUSec

TimeGPUPar
). The three GPUs are used

to analyse the behavior of our proposal over different number of resources.

In this paper, we do not display the speed up of construction of Permutation

Index. These results are illustrated in [19].

Figures 3 and 4 show the obtained acceleration in range queries (3) and k-NN
(4) queries for three database sizes and different number of permutants. In these
results, 80 queries are solved in parallel. As it can be noticed Range queries

show improvements respect to k-NN queries, but in both cases the achieved
speed up is very good. In all cases, it is clear the influence of database size, but
evenly we accomplish good performance. The best case is for largest database
and maximum number of permutants.

Tables I shows the obtained throughput (number of queries by second) by our
implementation. The results clearly show the benefits for all used architectures
of GPU. In every case and query kind, the number of queries by second is high.
Also we can observe that the number of permutants is not so important, for each

HPCLatAm 2013 - Page 108

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

Range SpeedUp - DB: 4KB

GTX520MX
GTX550Ti
GTX330

(a) 4KB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

Range SpeedUp - DB: 29KB

GTX520MX
GTX550Ti
GTX330

(b) 29KB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

Range SpeedUp - DB: 86KB

GTX520MX
GTX550Ti
GTX330

(c) 84KB

Fig. 3. Speedup of Range search Queries on three different GPUs.

 0

 100

 200

 300

 400

 500

 600

 700

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

k-NN SpeedUp - DB: 4KB

GTX520MX
GTX550Ti
GTX330

(a) 4KB

 0

 100

 200

 300

 400

 500

 600

 700

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

k-NN SpeedUp - DB: 29KB

GTX520MX
GTX550Ti
GTX330

(b) 29KB

 0

 100

 200

 300

 400

 500

 600

 700

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

k-NN SpeedUp - DB: 86KB

GTX520MX
GTX550Ti
GTX330

(c) 84KB

Fig. 4. Speedup of k-NN search Queries on three different GPUs.

GPU architecture and for all number of permutants, the throughput is similar,
quasi constant.

Table 1. Range and k -NN search Throughput.

Permut. GTX520MX GTX550Ti GTX330 GTX520MX GTX550Ti GTX330

128 27639,72 29310,63 16973,21 19824,25 19377,68 10850,85

100 28188,86 28907,35 16279,76 18816,38 19696,23 10956,71

80 28921,82 29621,19 16828,75 19771,86 19203,07 11051,72

64 29539,57 29362,77 16379,24 19797,83 18857,32 11137,65

32 29144,71 29582,42 16774,19 19774,12 19289,62 10263,80

16 29255,39 29248,81 16464,29 18785,79 19645,99 11237,29

5 28197,27 29604,32 16474,46 19906,59 19121,16 11262,48

Figures 5 and 6 resume the behavior of two operations: Range Query (Figure
5) and k-NN Query (Figure 6), for biggest database and three numbers of per-
mutants (5, 64, 128) when we vary the number of parallel queries in tow GPUs.
It can be seem that the best speed up was obtained when the number of queries
is equal to 80 and the number of permutants is the maximum. Also it is clear
the influence of GPU architecture, when it has more resources, better speed up
are achieved. Figures 5(a) and 6(a) depict these results.

HPCLatAm 2013 - Page 109

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

Range SpeedUp - GTX550Ti

128 permutants
64 permutants
5 permutants

(a) GTX550Ti

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

Range SpeedUp - GTX330

128 permutants
64 permutants
5 permutants

(b) GTX330

Fig. 5. Speedup of Range Search Queries for different number of parallel queries.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

k-NN SpeedUp - GTX550Ti

128 permutants
64 permutants
5 permutants

(a) GTX550Ti

 0

 100

 200

 300

 400

 500

 600

 700

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

k-NN SpeedUp - GTX330

128 permutants
64 permutants
5 permutants

(b) GTX330

Fig. 6. Speedup of k-NN Search Queries for different number of parallel queries.

6.1 GPU-Qsort with Other Solution

There are many quick sort library, one of them is Thrust. It is part of CUDA
repositories. Thrust library provides a collection of fundamental parallel algo-
rithms such as scan, sort and reduction. It solves a complementary set of prob-
lems, namely those that are (1) implemented efficiently without a detailed map-
ping of work onto the target architecture or those that (2) do not merit or simply
will not receive significant optimization effort by the user. With this library, de-
velopers describe their computation using a collection of high-level algorithms
and completely delegate the decision of how to implement the computation to the
library. This abstract interface allows programmers to describe what to compute
without placing any additional restrictions on how to carry out the computa-
tion [20]. A disadvantage of Thrust is that it can isolate the developer from
the hardware and expose only a subset of the hardware capabilities. In some
circumstances, the C++ interface can become too awkward or verbose [21].

We compared our implementation with a solution based in Thrust library. We
used the Thrust as a black box. Figure 7 shows the comparison considering four
frame sizes. The results are the average of one hundred executions. In the Figure
7, we can observe that our implementation obtains better speed up than the
solution using Thrust library. Besides it is important to notice the independence
of GPU-Qsort from GPU characteristics, it works fine in all GPU.

HPCLatAm 2013 - Page 110

 0

 8

 16

 24

 32

4 29 68 84

S
p
e
e
d
U
p

DB (KB)

GPU-Qsort vs Thrust

GPU-Qsort: GTX520MX
GPU-Qsort: GTX550Ti
GPU-Qsort: GTX330

Thrust: GTX520MX
Thrust: GTX550Ti
Thrust: GTX330

Fig. 7. Speedup of GPU-Qsort and Thrust on three different GPUs.

7 Conclusions

As it is mentioned before, in large-scale systems such as Web Search Engines
indexing multimedia content, it is critical to deal efficiently with streams of
queries rather than with single queries. Therefore, it is not enough to speed up
the time to answer only one query, but it is necessary to solve several queries at
the same time. In this work we present a solution to solve many queries in parallel
taking advantage of GPU architecture: it is a massively parallel architecture, it
has a high throughput because its capacity of parallel processing for thousands
of threads.

In this work we show an implementation that uses a Pemutation Index to
solve approximate similarity search on a database of English words. However, it
is possible to easily extend our proposal to other metric databases of different
data nature, such as vectors, documents, DNA sequences, images, music, among
others. The empirical results have shown improvements in every different con-
sidered architecture of GPU. Both obtained speed up and throughput are very
good, showing better performance when the load work is hard.

In the future, we plan to make an exhaustive experimental evaluation consid-
ering others kinds of database, comparing with other solutions that apply GPU
in the scenario of metric space approximate searches. We need also to evaluate
retrieval effectiveness of the answer of the Permutation Index, as the number of
objects directly compared with the query grows, by using Recall and Precission

measures.

8 Acknowledgements

We wish to thank to the UNSL for allowing us the access to their computa-
tional resources. This research has been partially supported by Project UNSL-
PROICO-30310 and Project UNSL-PROICO-330303.

References

1. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın, “Searching in metric
spaces,” ACM Comput. Surv., vol. 33, no. 3, pp. 273–321, 2001.

HPCLatAm 2013 - Page 111

2. E. Chávez, K. Figueroa, and G. Navarro, “Proximity searching in high dimensional
spaces with a proximity preserving order,” in Proc. 4th Mexican International
Conference on Artificial Intelligence (MICAI), ser. LNAI 3789, 2005, pp. 405–414.

3. D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, A Hands
on Approach. Elsevier, Morgan Kaufmann, 2010.

4. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “GPU
Computing,” in IEEE, vol. 96, no. 5, 2008, pp. 879 – 899.

5. R. J. Barrientos, J. Gomez, C. Tenllado, M. Prieto, and M. Marin, “kNN Query
Processing in Metric Spaces using GPUs,” vol. 6852, 2011, pp. 380–392.

6. V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “k-nearest neighbor search:
fast GPU-based implementations and application to high-dimensional feature
matching,” in IEEE Intern. Conf. on Image Processing, Hong Kong, Sept. 2010.

7. K. Kato and T. Hosino, “Solving k-nearest neighbor problem on multiple graphics
processors,” in 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, CCGRID, ACM, Ed., 2010, pp. 769–773.

8. S. Liang, Y. Liu, C. Wang, and L. Jian, “Design and evaluation of a parallel k-
nearest neighbor algorithm on CUDA-enabled GPU,” in IEEE 2nd Symposium on
Web Society (SWS), 2010, pp. 53 – 60.

9. R. Uribe, P. Valero, E. Arias, J. L. Sánchez, and D. Cazorla, “A GPU-Based
Implementation for Range Queries on Spaghettis Data Structure,” in ICCSA (1),
ser. Lecture Notes in Computer Science, vol. 6782. Springer, 2011, pp. 615–629.

10. P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The Metric
Space Approach, ser. Advances in Database Systems, vol.32. Springer, 2006.

11. K. Figueroa, E. Chávez, G. Navarro, and R. Paredes, “Speeding up spatial ap-
proximation search in metric spaces,” ACM Journal of Experimental Algorithmics,
vol. 14, p. article 3.6, 2009.

12. P. Ciaccia and M. Patella, “Approximate and probabilistic methods,” SIGSPA-
TIAL Special, vol. 2, no. 2, pp. 16–19, Jul. 2010.

13. B. Benjamin and G. Navarro, “Probabilistic proximity searching algorithms based
on compact partitions,” Discrete Algorithms, vol. 2, no. 1, pp. 115–134, Mar. 2004.

14. A. Singh, H. Ferhatosmanoglu, and A. Tosun, “High dimensional reverse nearest
neighbor queries,” in The 12th intern. conf. on Information and knowledge man-
agement, ser. CIKM ’03. New York, NY, USA: ACM, 2003, pp. 91–98.

15. F. Moreno, L. Mic, and J. Oncina, “A modification of the laesa algorithm for
approximated k-nn classification,” Pattern Recognition Letters, vol. 24, no. 13, pp.
47 – 53, 2003.

16. NVIDIA, “Nvidia cuda compute unified device architecture, programming guide
version 4.2.” in NVIDIA, 2012.

17. R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in Proc. of the
40th annual ACM-SIAM symposium on Discrete algorithms, SODA ’03. Philadel-
phia, USA: Society for Industrial and Applied Mathematics, 2003, pp. 28–36.

18. R. Singleton, “Algorithm 347: an efficient algorithm for sorting with minimal stor-
age [m1],” Commun. ACM, vol. 12, no. 3, pp. 185–186, Mar. 1969.

19. M. Lopresti, N. Miranda, F. Piccoli, and N. Reyes, “Efficient similarity search
on multimedia databases,” in XVIII Congreso Argentino de Ciencias de la Com-
putacin, CACIC 2012, 2012, pp. 1079–1088.

20. J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010.
21. R. Farber, CUDA Application Design and Development, 1st ed. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2011.

HPCLatAm 2013 - Page 112

