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Abstract. Granular mechanics plays an important role in many branches
of science and engineering, from astrophysics applications in planetary
and interstellar dust clouds, to processing of industrial mixtures and pow-
ders. In this context, a granular simulation model with improved adhe-
sion and friction, is implemented within the open source code LAMMPS
(lammps.sandia.gov). The performance of this model is tested in both
CPU and GPU (Graphics Processing Unit) clusters, comparing with
performance for the LAMMPS implementation of another often used
interaction model, the Lennard-Jones potential. Timing shows accelera-
tions of ∼4-10x for GPUs versus CPUs, with good parallel scaling in a
hybrid GPU-CPU cluster.
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1 Introduction

Graphics Processing Units (GPUs) are being used in numerous scientific projects
due to their high computing throughput and memory bandwidth. NVIDIA and
AMD, the principal graphics card manufacturers, provide their own Software
Development Kits (SDK) to use GPUs for general purpose computing: NVIDIA
offers CUDA [1] and AMD provides Accelerated Parallel Processing (APP) [2].
Both SDKs can compile and execute code developed with OpenCL [3].

Atomistic simulations, including Molecular Dynamics (MD) simulations are
one of the areas where application of GPUs has grown significantly. MD sim-
ulations solve Newton’s equations of motion for the trajectories of interacting
particles [4], and they have been extremely successful to model a variety of sys-
tems specially at the nanoscale [5]. These types of simulations solve the equations
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of motion for a set of particles interacting through some potentials; for this type
of simulations, the position and velocities of particles are known at discrete time
steps, and can be used to calculate the strain, stress, and temperature of the
system[4]. Therefore, MD is a versatile tool to study thermodynamic and me-
chanical properties of materials. One of the most used interaction models for
particles is the Lennard-Jones potential [4], which is computationally efficient
due to its simplicity, and it can capture complex behavior of materials, includ-
ing the solid-liquid (melt) phase transition. Execution time for MD simulations
with short-range interactions (i.e. excluding forces like electrical or gravitational
forces), can scale linearly with system size. This is achieved by building neighbor
lists for interacting particles and applying domain decomposition to spread the
system amongst different processes/tasks. For execution in clusters, the com-
munication overhead, due mostly to exchange of atoms in shared domains, can
often be minimized in such a way that a system with N particles running in n
processes, will have the same execution time that a system with 2N particles in
2n processes.

Several programs support the execution of MD simulations using GPUs. For
example, in the area of chemistry and biology: Amber [6], NAMD [7] and GRO-
MACS [8]. Moreover, in the area of physics and engineering simulation exist
several programs like HOOMD [9], LAMMPS [10] and DL POLY [11]. In this
work we use the LAMMPS software, which is a mature, open source code in con-
tinuous development. One of the advantages of the LAMMPS code is its parallel
efficiency. LAMMPS supports simulations in clusters using MPI [12, 13], mul-
ticore systems with OpenMP [14], and GPU clusters with CUDA or OpenCL
(using the Geryon library [15, 16]).

Granular simulations follow trajectories of particles with a finite volume
which cannot be penetrated by other particles. Interactions amongst particles are
typically short-ranged, and include contact and adhesive forces. There are sev-
eral computational approaches to carry out granular simulations, and within an
engineering or industrial context, granular simulations are generally carried out
using the Discrete Element Method (DEM) [17]. Typical MD codes for point par-
ticles can also be adapted to run granular simulations efficiently, and LAMMPS
includes the possibility of running a few different granular models both in CPUs
and GPUs.

Recently, Ringl and Urbassek presented an improved model for granular sim-
ulations, and its implementation within the LAMMPS CPU code [18]. In this
work, that CPU code is translated to GPU code. The new GPU code is validated
through comparison to the CPU version, and then the parallel performance of
the code is analyzed in several hardware configurations. Performance is also
studied for an often-used interaction model, the Lennard-Jones potential.
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2 Granular simulation details

In this section we describe the granular model, how the CPU code was imple-
mented in the GPU version of LAMMPS and finally the hardware infrastructure
and software details used to execute the simulations in this work.

2.1 Granular model

The granular theory implemented in this work is broadly discussed in [18] and
[19]. Here we briefly describe the added features to the LAMMPS base code
for granular simulations, for a description of the base features of LAMMPS
granular model see [20], for an introduction to the physics of granular materials
see [21]. In this case, granular simulations follow spherical grains, and the forces
between two grains are classified as normal or tangential forces. Normal forces
are divided in repulsive [22] and adhesive [23] forces. Tangential forces include
several friction forces due to gliding [24], rolling [25] and torsional motion [25].
Each grain interacts only with other grains within an extremely short distance,
leading to around 3-5 neighbors per grain in these particular simulations.

To test our implementation of the GPU version of the CPU code by Ringl
and Urbassek [18], a large prismatic cell containing 70000 silica grains was used.
Grains are arranged in a disordered, amorphous solid structure with high poros-
ity. The box was elongated, with its length along the z axis twice its length along
x and y axis. The top half of the cell was empty, to mimic empty space above a
surface. This is a typical starting configuration to model impact processes, where
material ejected from the surface moves towards the top of the box, and this was
indeed the configuration used to model impacts by large grains in recent work
[26]. For these performance tests, there is no impact, and all grains are given
small, random, initial velocities.

2.2 GPU code

The LAMMPS code provides two packages with GPU support: the GPU package
[16] and the USER-CUDA package developed mainly by Christian Trott. A de-
tailed discussion of the packages can be found on-line (http://lammps.sandia.
gov/doc/Section accelerate.html#acc 8). Only the USER-CUDA package
has the ability to execute granular simulations with the Granular-Hooke [27]
[20] [28] pair interaction style. The CPU code developed in [18] is an extension
of this pair style available for CPUs. For this reason, the GPU code developed
here is an extension of the GPU version of the Granular-Hooke pair style avail-
able in the USER-CUDA package.

According to the LAMMPS code architecture, a typical pair style for inter-
actions needs one file with the interaction details within the main src directory.
For the USER-CUDA package an additional cuda kernel is needed within the
lib/cuda directory. The new pair style is called granularEasy for both CPU and
GPU. The new code follows the optimizations already applied in the original
Granular-Hooke GPU pair style, such as using shared memory instead of global
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memory to store force calculations. Documentation and code are being sent to
the official LAMMPS repository for revision before being accepted as another
USER package, once the code is accepted, it will be available to everyone through
the official LAMMPS code source. Development and testing of the code was car-
ried out with the LAMMPS version from 11 of March 2013.

To validate and check the correct functioning of the GPU code, we compared
all the thermodynamic output against the corresponding output from the CPU
code developed in [18]. Both versions should return exactly the same results
given the same input configurations. In particular, for the total energy of the
system, the maximum deviation observed for several runs, some lasting 50000
time steps, was at most in the 8th significant digit, given a relative error of ∼1e-
6 %. The positions of the grains showed differences in the 6th significant digit
only for few grains, after 10000 steps, with a relative error of ∼2.5e-4%.

2.3 Hardware Infrastructure and Software Details

Simulations were executed in multiple hardware configurations.
(a) A workstation with six CPU cores and a single GPU (named Phenom).

The Phenom workstation has an AMD Phenom 1055T six cores CPU at 2.8GHz,
with 12 GB of RAM, and 1Tb 7200 RPM SATA hard drive.The operating system
installed in the Phenom workstation is a Linux distribution, Slackware 13.37
64 bits with OpenMPI 1.4.2 and gcc 4.5.3.

(b) A single NVIDIA Tesla C2050 GPU, within the Phenom workstation.
This GPU has 448 cores running at 1.15 GHz with 3GB of ECC memory, it
supports single and double precision and has Compute Capability (CC) of 2.0.
The Compute Capability (CC) of the GPU indicates which features of CUDA the
GPU can execute, for example: CC 1.3+ supports double precision, but previous
versions can only execute code in single precision. The GPU is connected into a
PCIe 2.0 x16 slot with 8 GB/s of maximum bandwidth.

(c) The two-node ICB-ITIC AMD Opteron cluster, with 64 CPU cores at
2.1GHz, 128 GB of RAM and dual Gigabit Ethernet in each node. The Linux
distribution installed in the cluster is Rocks Cluster 5.5, with OpenMPI 1.4.3
and gcc 4.1.2.

(d) The UNC Mendieta heterogeneous (CPU+GPU) cluster, consisting of
eight nodes with two Intel Xeon E5-2680 CPUs at 2.7GHz and 32 GB of RAM
each, housing twelve NVIDIA Tesla M2090 GPUs with 6 GB GDDR5 memory
(177 GBps) and 512 cuda cores at 1.3 GHz, and two NVIDIA Tesla C2075 GPUs
with 6 GB GDDR5 memory (150 GBps) and 448 cuda cores at 1.15 GHz. GPUs
are connected to PCIe 3.0 x16 slots, although the Tesla M2090 and C2075 are
PCIe 2.0 x16 boards. The nodes are connected through a 20Gbps InfiniBand
DDR switch in a star configuration. We note that each node has only one Infini-
Band card and, therefore, communications between GPUs from different nodes is
shared between the 2 GPUs and the CPUs in each node. The Linux distribution
installed in this cluster is CentOS 6.4 with MPICH 3.0.4.

According to [29] the use of InfiniBand in a cluster with LAMMPS provides
up to 193% of higher performance than Ethernet using 14 cluster nodes. On some
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test, four cluster nodes connected through InfiniBand give similar performance
than 14 cluster nodes connected with Ethernet [29].

(a), (b), and (c), are part of the ICB-ITIC cluster hardware at the Uni-
versidad Nacional de Cuyo, Mendoza, Argentina, while (d) is located at the
Universidad Nacional de Córdoba, Córdoba, Argentina,

The LAMMPS code used in all the hardware configurations was the same,
version dated 11-Mar-2013 with CUDA 5.0. The LAMMPS code was compiled
with -O2 optimizations and the USER-CUDA package with CC 2.0 and with dou-
ble precision. We note that Tesla GPUs can bypass the CPU and do GPUDirect
transfers to other GPUs either locally or through Infiniband to speed up MPI
communication between processes, but this requires GPUDirect-aware code and
a supporting MPI implementation (e.g. MVAPICH2). This is not the case for
LAMMPS.

3 Benchmarks

We tested the CPU and GPU code with a simple simulation, a box with 70000
grains with different initial velocities. We ran the simulations for 1000 steps,
printing the thermodynamic information every 100 steps. To simulate a greater
number of grains we use the replicate command of LAMMPS to expand the box
N times in each direction, for example, “replicate 2 2 2” will create 8 times more
grains than the one presents in the initial box (see LAMMPS documentation,
lammps.sandia.gov).

Figure 1 displays the simulations that were executed in the Phenom work-
station [hardware configuration (a)], for different number of grains, from 7e4 to
4.48e6 grains. One curve for each number of CPU cores (1, 2, 4, and 6) and one
curve for the NVIDIA Tesla c2050 GPU housed within the Phenom worksta-
tion [hardware configuration (b)]. The behavior of the wall clock time is roughly
linear, as expected from typical MD codes. Two more curves are shown in the
figure 1, the 7.5e4 curve fits the results obtained in [18] with a single processor
AMD Opteron 275 running at 2.2 GHz. The 0.6e4 curve fits the results obtained
with the Tesla c2050 GPU.

The largest number of grains which can be processed using the 3 GB memory
of this GPU is approximately 4.5e6. The CPUs in the Phenom workstation have
more RAM memory (12 GB) available, and they can process up to 24e6 grains.
This is larger than the 18e6 grains expected from the GPU limit due to different
memory management strategies. Table 1 contains the wallclock time for the
Phenom workstation and the Tesla c2050 GPU for different system sizes. The
average speedup obtained for the GPU vs one CPU core is 7.01 x. Comparing the
GPU vs six CPU cores the average speedup is 2.95 x. These values of speed-up
are similar to values reported for MD simulations using LAMMPS [16]. We note
that running multiple cases for the same hardware configuration, for instance
changing the random seed for initial velocities, changes the timing only within
a few percent of the values listed in Table 1.
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Fig. 1. Granular simulation with the GranularEasy pair style, 13 different amounts of
grains, and 1000 steps, for different hardware configurations. A fit to the CPU results
from [18] and a fit to the new GPU results are also included.

It is important to know not only the performance of the code for different
system sizes, but the performance for a fixed size and different number of pro-
cesses. Figure 2 shows the wall clock time for the granular simulations with
4.48e6 grains, for 1000 steps, and for several number of parallel processes. The
benchmarks are performed for all hardware configurations described above (a-d).
For an ideal parallelization strategy, timing should be proportional to 1/n, for
n processes. This scaling would eventually decrease its slope due to communica-
tion amongst processes. This 1/n scaling is what is observed for small number
of processes in Fig. 2, together with the levelling-off due to communications. It
is clear that the Tesla M2090 GPU execution gives the best results. Executing
the simulation in one M2090 GPU takes 184.48 s, two GPU processes in one
node take 91.73 s , and four GPU processes in two nodes take 45.85 s. This last
configuration gives the best result, because increasing the number of GPUs to
6 or 8 also significantly increases communication between them. The results ob-
tained in CPU-only executions in the ICB-ITIC and Mendieta cluster did not
achieve as good a performance as GPU executions. The best CPU-only time was
obtained in the ICB-ITIC cluster using 16 CPU cores at 192.89 s.

The simulation box being elongated and half-empty leads to an imbalance in
the assignation of processing work to each GPU, and deteriorates communication
time, leading to a large increase in execution time for six processes in the M2090
GPU of the Mendieta cluster. The simulation time could be significantly reduced
by eliminating the empty space in the system box and obtaining a roughly cubic
box, removing the imbalance and at the same time minimizing communication.
For this reason, a new simulation was executed using such homogeneous box,
and the time for this new case is also shown in fig. 2 for six parallel processes.
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Table 1. Granular simulations for different number of grains. Wall-clock time in sec-
onds, with GPU vs CPU speedups also provided.

Number of CPU CPU GPU Speedup Speedup
grains 1 core 6 cores GPU vs 1 core GPU vs 6 cores

70000 27.631 s 15.3 s 4.71 s 5.87 3.25

140000 53.88 s 29.91 s 8.74 s 6.16 3.42

280000 106.59 s 59.52 s 16.79 s 6.35 3.54

420000 175.74 s 86.7 s 24.77 s 7.09 3.50

560000 236.11 s 93.85 s 33.01 s 7.15 2.84

630000 254.24 s 94.42 s 36.79 s 6.91 2.57

840000 354.46 s 143.3 s 48.93 s 7.24 2.93

1120000 460.92 s 195.31 s 64.95 s 7.10 3.01

1260000 585.72 s 207.96 s 72.91 s 8.03 2.85

1680000 768.01 s 268.8 s 98.92 s 7.76 2.72

1890000 788.59 s 261.11 s 111.46 s 7.08 2.34

3360000 1386.8 s 443.12 s 209.35 s 6.62 2.12

4480000 1929.38 s 650.57 s 266.71 s 7.23 2.44

AVG speedup 7.01 2.95

Fig. 2. Granular simulation with the GranularEasy pair style, with 4.48e6 grains and
1000 steps, for different number of parallel processes, in multiple hardware configura-
tions, as described in text.

Figure 3 shows the total execution time for several granular simulations, di-
vided into several contributions: communication time, calculation of pair forces,
building of neighbor list, and time for other calculations (like output time). This
figure clearly shows the increase of communication time with increasing number
of processes, 4 GPU processes are executed in 2 cluster nodes (2 GPUs in each
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node), 6 GPU processes in 3 nodes and finally 8 GPU processes are executed in
4 nodes.

Fig. 3. GPU Granular simulation, 1000 steps with 4.48e6 grains, for different number
of processes. For six processes, two simulations are shown, one has an elongated, half-
empty heterogeneous box, and the second has a cubic homogeneous box filled with
grains.

Because the granular simulation is set for a heterogeneous box (elongated and
half-empty), the LAMMPS domain decomposition will assign GPUs to empty
regions, decreasing performance. This is the case for 6 processes using the default
domain decomposition. To improve this situation, we execute the same simula-
tion using the homogeneous box also used for Fig. 2, shown with a thick border
line. Communication time decreases significantly, as expected.

3.1 Benchmarks for Lennard-Jones interaction

Lennard-Jones (LJ) systems have also been used to model grains [30] [31]. Here
the melt example for L-J particles from the LAMMPS distribution is used to
study performance in the hardware configurations used for granular benchmarks.
In this example, the starting configuration is a cubic box, with particles in perfect
crystal positions using a cubic unit cell, as shown in Figure 4(a). A large velocity
is assigned to all atoms, leading to melting of the initial solid. This results in
the liquid structure seen in Fig. 4(b). Note that a liquid and an amorphous
solid of the same substance, can generally only be differentiated by calculation
of particle diffusivity, which would be much larger in the liquid. The amorphous
structure used in the granular simulations can be seen in Fig. 4(c).

In Figure 5 one can observe the melt simulation running in the Mendieta
cluster, in GPUs and CPUs, for two different values of the interaction cut-off
values. Simulations were executed for 1000 timesteps with 256e3 atoms. The in-
teraction cut-off gives the radius of the sphere, centered around each particle,
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Fig. 4. Different Molecular Dynamics snapshots. (a) Melt simulation for 256e3
Lennard-Jones particles, at timestep 0. (b) Same simulation shown in (a), at timestep
10000, showing an amorphous liquid resulting from the destruction of the initial crys-
talline order. (c) Granular simulation with the GranularEasy pair style with 7e4 grains
at timestep 10000, showing an amorphous solid structure.

within which other particles would be considered to interact with that center
particle. We are considering the L-J interactions as short-range in the sense
that they decrease rapidly with distance. Neglecting interactions beyond certain
distance (the radial cut-off) might be computationally efficient without compro-
mising the accuracy of the results. For the simulations here, a cut-off of 2.5 (in
LJ length units) would be fairly standard, and would include ∼ 75 neighbors.
A cut-off of 5.0 would be rarely used, and would include ∼ 526 neighbors. LJ
simulations provide a better opportunity to study communication effects, given
that the number of neighbors is much larger than in granular simulations and it
can be easily changed with large variations.

Fig. 5. Lennard-Jones melt simulation, for 1000 steps and 256e3 atoms, for different
number of processes in the Mendieta cluster with CPUs and GPUs.

As for the granular simulations, the GPUs clearly outperforms the CPUs,
even for 64 cores. The speed-up can reach nearly factors larger than 20. The
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timing for the smaller cut-off is smaller, as expected due to communication
increase for larger neighbor lists.

Figure 6 shows the total execution time for several LJ simulations divided
into several contributions, as in Fig 3. The time values also clearly show increase
of communication time with increasing number of processes, and a tremendous
difference in communication and force calculation time with the longer cut-off,
as expected.

Fig. 6. GPU Melt simulation, 1000 steps with 256e3 atoms, for different number of
processes.

4 Summary and Conclusions

Granular simulations are useful to understand the behavior of various systems
of interest for both basic science and technological applications. In this work
an improved granular model recently presented for CPUs [18], was implemented
to run in GPUs within the USER-CUDA package of the LAMMPS Molecular
Dynamics (MD) software distribution [10].

The granular model was validated by detailed comparison to results from the
CPU version. Speedups of ∼7 x (compared to one CPU core) and ∼3 x (com-
pared to six CPU cores) were obtained, and compared well with other speed-
ups reported for MD simulations [16]. Benchmarks performed in different hard-
ware configurations, including one CPU cluster and a hybrid CPU-GPU cluster,
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showed that the GPU code is always faster that the CPU version. To compare
with typical MD simulations, we also report performance of the Lennard-Jones
(LJ) interaction potential in the same hardware configurations.

We also tested the difference between granular simulations for a cubic ho-
mogeneous box, versus an elongated, half-filled heterogeneous box, containing
the same grains. The large decrease in execution time for the homogeneous box
points to the relevance of a careful simulation design, taking into account both
domain decomposition possibilities and communication expenses due to partic-
ular domain choices.

For a single GPU, a linear scaling is observed with increasing system size.
An inverse linear scaling is also observed for a fixed system size (4.48e6 grains),
increasing the number of processes, using up to 4 GPUs. For more processes
the timing does not decrease further due to communication increase. Commu-
nications are typically related to the number of neighbor particles/grains which
has to be considered for interactions. In granular simulations there are very few
neighbors, while in LJ simulations there are 70-500 neighbors, depending on the
chosen interaction cut-off.

For granular simulations, a Tesla c2050 GPU is similar in performance to 16
CPU cores in the ICB-ITIC cluster. The Mendieta cluster using Tesla M2090
GPUs give the best performance in our tests, since using 4 GPUs in two cluster
nodes gives a speedup of ∼4.2 x against the best CPU result (ICB-ITIC cluster
with 16 CPU cores). These figures point out to the good performance of atomistic
codes in GPUs, with future improvements expected from the new Kepler GPU
architecture, as already reported for the code HOOMD [32].
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