
Towards a Distributed GPU-Accelerated
Matrix Inversion

Gerardo Ares1,2, Pablo Ezzatti2, and Enrique S. Quintana-Ortí3

1 Bull, 01227-901-São Paulo, Brazil. gerardo.ares@lam-bull.com
2 Instituto de Computación, Universidad de la República, 11.300-Montevideo,

Uruguay. {gares,pezzatti}@fing.edu.uy
3 Dpto. de Ingeniería y Ciencia de Computadores, Universidad Jaume I,

12.071–Castellón, Spain. quintana@icc.uji.es

Abstract. We present an extension of a GPU-based matrix inversion al-
gorithm for distributed memory contexts. Specifically, we implement and
evaluate a message-passing variant of the Gauss-Jordan method (gje)
for matrix inversion on a cluster of nodes equipped with GPU hard-
ware accelerators. The experimental evaluation of the proposal shows a
significant runtime reduction when compared with both the distributed
non-GPU implementation of gje and a conventional method based on
the LU factorization (as implemented in ScaLAPACK). In addition to
this, our proposal leverages the aggregated capacity of the GPU memo-
ries in the cluster to overcome the constraints imposed by the reduced
memory space of these devices.

1 Introduction

Though the explicit inversion of matrices can often be by-passed by solving the
corresponding systems of linear equations, there are situations where the inverse
of a matrix itself is of interest. Examples include earth sciences [14], the matrix
sign function method for spectral decomposition [13], the low rank radiosity
technique for computer graphics [8], and other disciplines (see [11] for a detailed
list). Here, we focus on the inversion of large-scale general matrices (say, more
than several thousands of rows/columns). This operation, like many other dense
linear algebra computations, requires an important computational effort in terms
of execution time and memory, which motivates the use of distributed-memory
platforms and graphics processors (GPUs) [15, 2, 3].

The conventional strategy for matrix inversion is based on Gaussian elimi-
nation (i.e., the LU factorization) and is available in LAPACK [1] for shared-
memory platforms and ScaLAPACK [6] for distributed (i.e., message-passing)
contexts. However, following previous work on matrix inversion implementation
on clusters [12] and studies about the adoption of GPUs to speed up this com-
putation [4], we focus on the Gauss-Jordan elimination algorithm (gje). This
alternative method is, in essence, a reordering of Gaussian elimination, which
casts the bulk of computations in terms of matrix-matrix products, and presents
several other appealing properties.

HPCLatAm 2013, pp. 80-88 (full paper)
Session: GPU Architecture and Applications

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013



Taking into account the previous exposition, in this paper we analyze the
extension of the gje method for (general) matrix inversion to a distributed plat-
form composed of hybrid CPU+GPU nodes. Specifically, we present and evaluate
high performance implementations of the gje method on two different systems, a
cluster of multi-core CPUs and a cluster composed of hybrid CPU+GPU nodes.
Numerical experiments illustrate that our GPU-based version outperforms the
distributed CPU version as well as the shared-memory implementation in LA-
PACK. On the other hand, both variants exhibit reasonable weak scalability,
and the GPU-based version offers acceptable strong scalability for medium size
problems, and high performance for large problems. Furthermore, our proposal
aggregates the memory of all GPUs in the cluster, thus avoiding for this matrix
operation one of the most commonly bottlenecks in GPU computing, namely
the limited capacity of the accelerator memories.

The rest of the paper is structured as follows. In Section 2 we review the gje
approach for matrix inversion. Additionally, we offer an introduction to matrix
inversion on distributed contexts and review the efforts related to the use of
GPUs to accelerate this operation. Several high performance implementations
of distributed gje method are described and evaluated in Sections 3 and 4,
respectively. Finally, a few concluding remarks and future work is presented in
Section 5.

2 Matrix Inversion: Methods and Parallelization

gje for matrix inversion is, in essence, a reordering of the computations per-
formed by the traditional matrix inversion method based on Gaussian elimina-
tion. Therefore, it is natural that both procedures feature the same arithmetic
cost: 2n3 flops (floating-point arithmetic operations) [9, 12], where n denotes the
matrix dimension. Figure 1 illustrates a blocked version of the gje algorithm for
the inversion of a matrix A using the FLAME notation. In the illustration, m(A)
stands for the number of rows of matrix A. We believe the rest of the notation is
intuitive but, for further details, see [10, 5]. A description of the unblocked ver-
sion of gje, called from inside the blocked one, can be found in [12]. It should be
noted that, upon termination, the contents of A are overwritten with those of its
inverse (i.e., this is an in-place procedure). Also, all the developed implementa-
tions that are evaluated next include partial pivoting which, in practice, ensures
numerical stability. For simplicity, though, we do not consider the application of
pivoting during the following presentation, but details can be found in [12].

2.1 Matrix inversion on distributed contexts

Inversion of a general matrix A ∈ Rn×n via the LU factorization can be ac-
complished in three steps. First the matrix is decomposed as A = LU , where
L ∈ Rn×n and U ∈ Rn×n are unit lower and upper triangular factors, respec-
tively; the upper triangular factor is then explicitly inverted: U → U−1 = Ū ; and

HPCLatAm 2013 - Page 81



Algorithm: [A] := GJE_blk(A)

Partition A→
(
ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do
Determine block size b
Repartition(

ATL ATR

ABL ABR

)
→

A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× bA01

A11

A21

 := GJE_unb

A01

A11

A21

 Unblocked Gauss-Jordan

A00 := A00 +A01A10 Matrix-matrix product
A20 := A20 +A21A10 Matrix-matrix product
A10 := A11A10 Matrix-matrix product
A02 := A02 +A01A12 Matrix-matrix product
A22 := A22 +A21A12 Matrix-matrix product
A12 := A11A12 Matrix-matrix product

Continue with(
ATL ATR

ABL ABR

)
←

A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Fig. 1. Blocked algorithm for matrix inversion via GJE without pivoting.

finally, the (lower unit) triangular system A−1L = Ū is solved for the sought-
after inverse A−1.

LAPACK [1] is a high-performance linear algebra library (for shared-memory
multiprocessors) which provides routines that cover the functionality required in
the previous steps. In particular, routine getrf obtains the LU factorization
(with partial pivoting) of a nonsingular matrix, while routine getri computes
the matrix inverse using the triangular factors obtained by getrf. Additionally,
ScaLAPACK extends most of LAPACK’s functionality to distributed memory
contexts, providing analogous routines.

The traditional method for matrix inversion, using the LU factorization (and
ScaLAPACK), presents some difficult features for high performance parallel
computing. In particular, this approach operates with triangular matrices which
often yields load imbalance. This problem is identified in [12] where both meth-
ods, Gaussian elimination and gje, are compared. Concretely, the authors had

HPCLatAm 2013 - Page 82



evaluated the inversion of general and SPD matrices in a cluster with 32 proces-
sors, concluding that gje clearly outperforms the LU-factorization and Cholesky-
based methods.

2.2 Matrix inversion accelerated with GPUs

In [4], several strategies to improve the performance of matrix inversion were
evaluated on a hybrid CPU+GPU system. That work considers inversion of
general, SPD and symmetric indefinite matrices, and leverages techniques such
as hybrid computation, concurrent execution and look-ahead during the compu-
tation of this particular operation. The results show speed ups of up to 4.5× on
a Intel Xeon E5520 quad-core connected to an NVIDIA Tesla C2050 over the
non-GPU implementation.

The utilization of several GPUs, up to four, connected to only one host to
invert general matrices is addressed in [7], illustrating the benefits that a multi-
GPU platform can render for fast inversion of large general matrices.

In summary, the results in both articles confirm that gje is a highly appealing
approach to invert general matrices on massive parallel contexts.

3 Distributed Implementations of Matrix Inversion

We have implemented two variants, both based on gje, for distributed ma-
trix inversion. The homogeneous variant is designed to compute on traditional
distributed-memory hardware platforms with CPU nodes, and the hybrid one is
conceived to take advantage of clusters with nodes that include GPUs.

3.1 Matrix inversion on (homogeneous) CPU clusters

gje presents the appealing property that all iterations of the basic algorithm
(see Figure 1) perform the same number of operations. Therefore, a parallel
implementation of this algorithm does not require a cyclic distribution of the
data to balance the workload and, instead, a blocked data layout suffices for
this purpose. On the other hand, while 2D distributions are, in general, to be
preferred for scalability reasons, given that the control theory problems that
we are addressing in practice do not involve matrices with more a few ten of
thousands rows/columns, for simplicity we restrict our implementations to use
a 1D block data distribution among the cluster nodes.

Assume thus that the matrix to invert is distributed among the c nodes
of the cluster following a column block data layout, with d = n/c consecutive
columns assigned to each node (for simplicity, we assume that n is an integer
multiple of c). At each iteration of the main loop in the gje algorithm, the
multicore CPUs of the node where the current column panel (

[
AT

11, A
T
21, A

T
31

]T
of width b � d) is mapped to, collaborate to compute the factorization of this
panel locally using algorithm GJE_unb. After that the factored column panel
and the local pivot indexes are broadcast to the remaining nodes, which then

HPCLatAm 2013 - Page 83



perform the update of their local blocks with a single matrix-matrix product.
This procedure is repeated until the whole matrix is processed.

Within each node, multicore parallelism is exploited by invoking a multi-
threaded version of BLAS to perform the matrix-matrix product required by
the update and also part of the operations that appear in algorithm GJE_blk.

3.2 Matrix inversion on hybrid CPU+GPU clusters

While this variant also leverages a 1D block distribution by columns, in this
case the portion of the matrix assigned to one node is stored in the memory
of the local GPU. Now, at each iteration, the factorization of the current panel
is also performed by the multicore CPUs, which requires a previous transfer of
these data from the local GPU memory to the local main memory of the node
where this block resides. This result is then broadcast to the remaining nodes
and all them then transfer it from their local main memory to their local GPU
memory, where the updates of the remaining parts of the matrix are performed
using the data-parallel implementation of the matrix-matrix product available
in NVIDIA’s BLAS.

4 Experimental Evaluation

4.1 Experimental platform

All the following experiments were performed using ieee single precision on two
different platforms:

– CPU cluster: 8 nodes equipped with 2 Intel Sandy-Bridge processors at
2.70 GHz (8 cores per processor) and 64 GBbytes of RAM, connected by
an Infiniband QDR (40 Gbits/s), and running on OS bullx Linux Server
release 6.3 (V1). The libraries include Intel v12.1.4 compiler, Intel MKL
v11.0 library (for BLAS) and bullxmpi v1.2.4.1 (for communication, includ-
ing MPI).

– GPU+CPU cluster: 4 nodes with 2 Intel Xeon E5640 (Nehalem) at 2.67 GHz
(quad-core) and 24 GBbytes of RAM. Each node also features 2 NVIDIA
Tesla M2050 (Fermi) GPUs (448 cores and 3 GBbytes of RAM per GPU),
and the interconnect is Infiniband QDR. The software consists of bullx Linux
Server release 6.3 (V1), Intel v12.1.4 compiler, Intel MKL v10.3 library,
bullxmpi v1.2.4.1, and CUDA 4.0.17.

4.2 Experiments

In our first experiment, we evaluate the GFLOPS (109 flops/s) achieved by
both distributed versions, GJECPU and GJEGPU, when inverting matrices with
dimensions between 64K and 74K; see Figure 2. In this case, the GJECPU version
employs the whole platform, i.e. the 8 nodes of the CPU cluster, while GJEGPU
leverages the 4 nodes–8 GPUs of GPU+CPU cluster. Additionally to this two

HPCLatAm 2013 - Page 84



distributed matrix inversion algorithms, for reference we also include the LU-
based inversion method implemented in LAPACK, running in a single node,
in our experimentation. In the results presented hereafter the transfer costs of
moving data between CPU and GPU are always included in the total runtime
of the GPU versions.

62 64 66 68 70 72 74 76

0

200

400

600

800

1000

1200

1400

1600

1800

Matrix dimension

G
F

LO
P

S

 

 

GJE on GPU
GJE on CPU
LAPACK on CPU

Fig. 2. Performance (in GFLOPS) of GJEGPU, GJECPU and the LAPACK-based
variants when applied to invert matrices with dimensions between 64K and 74K.

The results in Figure 2 show that both distributed implementations of matrix
inversion (CPU-based and hybrid) undoubtedly outperform the single-node LA-
PACK version (shared-memory parallelism), respectively obtaining speed-ups of
up to 40× and 100× with respect to that. Moreover, the distributed GPU-based
version presents a considerably higher GFLOPS rate (and, therefore, a much
shorter runtime) than the distributed CPU-based variant, attaining up to 1,770
GFLOPS to invert the largest matrix covered in our experimental evaluation,
which represents an speed-up of up to 2.6× with respect to the CPU-based
variant.

The three plots in Figure 3 analyze the scalability of our proposals. Partic-
ularly, there we evaluate the GFLOPS achieved by the GJECPU and GJEGPU
implementations for an increasing numbers of nodes and GPUs respectively (1,
2, 4 and 8), and three different dimensions: small (10K), medium (32K) and
large (74K) cases.

Consider first the weak scalability, i.e., how the solution time varies with the
number of computational resources (CPUs or GPUs) for a fixed problem size per
resource. Figure 3 show that both GJECPU and GJEGPU perform reasonable

HPCLatAm 2013 - Page 85



1 2 4 8
0

100

200

300

400

500

600

G
F

LO
P

S

Number of nodes/GPUs

 

 

GJE on GPU
GJE on CPU
LAPACK on CPU

1 2 4 8
0

200

400

600

800

1000

1200

1400

G
F

LO
P

S

Number of nodes/GPUs

 

 
GJE on GPU
GJE on CPU
LAPACK on CPU

1 2 4 8
0

200

400

600

800

1000

1200

1400

1600

1800

G
F

LO
P

S

Number of nodes/GPUs

 

 

GJE on GPU
GJE on CPU
LAPACK on CPU

Fig. 3. Performance (in GFLOPS) of GJEGPU, GJECPU and LU-based variants to
invert small, medium and large matrices (top, middle and bottom, respectively).

HPCLatAm 2013 - Page 86



well in this metric as the addition of more resources to tackle larger problems
results in a fair increase of performance.

On the other hand, from the point of view of strong scalability (i.e., how
the solution time varies with the number of computational resources for a fixed
total problem size), this experiment reports poor results for the small case, as
only GJEGPU increases its GFLOPS rate and then, only for up to 4 GPUs.
For the medium problem dimensions, there is a lack of strong scalability for
GJECPU but GJEGPU exhibits a fair behavior. Finally, for the large cases,
GJECPU presents a good strong scalability. Unfortunately, the resolution of the
74K problem requires at least 22 GBbytes of memory to keep the whole matrix
so this case cannot be run using less than 8 GPUs, making it impossible carry
out the scalability study.

5 Concluding remarks and future work

We have conducted an initial study of the benefits of applying GPU acceleration
to invert general matrices in distributed memory platforms. Specifically, we im-
plemented a distributed (i.e., message-passing) version of the gje method using
MPI for the communication and synchronization, and CUDA for the interaction
with the GPUs. The experimental analysis showed that the novel implemen-
tation significantly reduces the runtime of matrix inversion, with speed-ups of
up to 2.6× and 100× when compared to the CPU-based and LAPACK (LU-
based) versions, respectively. Furthermore, the GPU-based proposal exhibits a
reasonable degree of weak scalability and acceptable values of strong scalability.

An additional highlight of our proposal is that the coordinated use of sev-
eral GPUs increases the aggregated memory space, allowing us to tackle larger
problems, and addressing an important bottleneck of GPU technology.

Future research lines resulting from this experience will include:
– Use of large platforms to further reduce the computational times and increase

the dimension of the problems that can be tackled.
– Migrate the codes to a 2D block data distribution.
– Incorporate GPU Direct to advance in the scalability of the proposal.

Acknowledgments

The authors would like to Alfredo Remón for his technical support, and Bull
for granting the access to the hardware facilities employed in the performance
evaluation.

Enrique S. Quintana-Ortí was supported by the CICYT project TIN2008–
06570-C04-01 and FEDER.

References
1. E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. E. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, 1992.

HPCLatAm 2013 - Page 87



2. Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, Enrique S.
Quintana-Ortí, and Gregorio Quintana-Ortí. Exploiting the capabilities of modern
GPUs for dense matrix computations. Concurr. Comput. : Pract. Exper., 21:2457–
2477, December 2009.

3. P. Benner, P. Ezzatti, E. S. Quintana, and A. Remón. Using hybrid CPU-GPU
platforms to accelerate the computation of the matrix sign function. In Lecture
Notes in Computer Science, 7th Int. Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Networks – HeteroPar’09, volume 6043,
pages 132–139. Springer Berlin / Heidelberg, 2010.

4. P. Benner, P. Ezzatti, E. S. Quintana-Ortí, and A. Remón. Matrix inversion on
CPU-GPU platforms with applications in control theory. Concurrency & Compu-
tation: Pract. & Exp., 25(8):1170–1182, 2013.

5. P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ortí, and R. A. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM Trans. Math.
Soft., 31(1):1–26, March 2005.

6. J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear
algebra library for distributed memory concurrent computers. In Proceedings of
the Fourth Symposium on the Frontiers of Massively Parallel Computation, pages
120–127. IEEE Comput. Soc. Press, 1992.

7. P. Ezzatti, E.S. Quintana-Ortí, and A. Remón. High performance matrix inversion
on a multi-core platform with several gpus. In Parallel, Distributed and Network-
Based Processing (PDP), 2011 19th Euromicro International Conference on, pages
87–93, 2011.

8. E. Fernández and G. Besuievsky. Inverse lighting design for interior buildings
integrating natural and artificial sources. Computers & Graphics, 36(8):1096–1108,
2012.

9. A. V. Gerbessiotis. Algorithmic and Practical Considerations for Dense Matrix
Computations on the BSP Model. PRG-TR 32, Oxford University Computing
Laboratory, 1997.

10. J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME:
Formal linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–
455, December 2001.

11. Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.

12. E.S. Quintana-Ortí, G. Quintana-Ortí, X. Sun, and R.A. van de Geijn. A note on
parallel matrix inversion. SIAM J. Sci. Comput., 22:1762–1771, 2001.

13. J.D. Roberts. Linear model reduction and solution of the algebraic Riccati equation
by use of the sign function. 32:677–687, 1980. (Reprint of Technical Report No.
TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971).

14. B.D. Tapley, B.E. Schutz, and G.H. Born. Statistical Orbit Determination. Elsevier
Academic Press, 2004.

15. Vasily Volkov and James Demmel. LU, QR and Cholesky factorizations using
vector capabilities of GPUs. Technical Report No. UCB/EECS, 49, May 2008.

HPCLatAm 2013 - Page 88


