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Abstract. A CUDA implementation of the 3D viscous incompressible
Navier-Stokes equations is proposed using as advection operator the
BFECC (Back and Forth Error Compensation and Correction) scheme.
The Poisson problem for pressure is solved with a CG (Conjugated Gra-
dient) preconditioning the system with FFTs (Fast Fourier Transforms).
Study cases such as Lid-Driven Cavity and Flow Past Circular Cilinder
, both 2D and 3D, are solved in order to check accuracy and obtain
performance meassurements.
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1 Introduction

1.1 Fractional Step Method

The equations being solved are the classical incompressible viscous Navier-Stokes
equations

∂u
∂t

+ (u · ∇) u = −1
ρ
∇p+ ν∇2u + f , (1)

∇ · u = 0, (2)

where u is the velocity field, p the pressure field, ρ the density (constant), ν
the kinematic viscosity (constant) and f a body force per unit volume. These
equations are going to be solved using several combination of boundary and
initial conditions.

Considering w0 as an approximation to the solution of u at time t = n∆t,
where ∆t is doing reference at time step and n to performed steps, one can obtain
the solution at t+∆t by performing successively the following operations [Sta99]

– Force: Add force terms

w1(x, t) = w0(x, t) +∆t f(x, t). (3)
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– Advection: The BFECC method obtains w2 from w1 following the charac-
teristics. As a result an unconditionally stable scheme is obtained.

– Diffusion: Here we seek for a solution of

∂w
∂t

= ν∇2w, (4)

in the interval [t, t+∆t], with w(t) = w2, w(t+∆t) = w3.
– Projection: Finally the projection step is needed in order to make the result-

ing field divergence free. This is

w4(x, t) = w3(x, t)−∇p, (5)

where p is defined as the solution of [CML80]

∇2p = ∇ ·w3 in D, (6)
∇p · n̂ = w3 · n̂ in ∂D, (7)

D ∈ <n being the domain on a n-dimensional space, ∂D its boundary and
n̂ the outward normal to ∂D.

1.2 Semi-Lagrangian Time Integration

Lets consider for the moment a scalar field F that is being advected by the
velocity field u; mathematically

D(m)F

Dt
=
∂F

∂t
+ u · ∇F = 0, (8)

where D(m)/Dt stands for material derivatives, i.e. following fluid particles.
The approach for solving this kind of equations follows that presented on

[SC91]. Considering equation (8) as 1D (higher dimensional expressions follows
that on 1D), a splitting reveals that

∂F

∂t
+
dx

dt

∂F

∂x
= 0, (9)

where
dx

dt
= u(x, t), (10)

that can be solved leading to an ordinary differential equation whose value
is constant throughout the streamline. This last equation relates, in particular,
points A and C of Figure 1. The objective is to track back the streamline passing
through C at time t+∆t to the point defined as A at time t. This can be done
following the streamline (solid curve) or using the velocity field (dashed curve),
in this case as a first order predictor of the previous position; i.e. point A’.

Analysis of stability properties of the Semi-Lagrangian advection scheme
shows that it is possible to stably integrate it for CFL numbers greater than
unit.
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Fig. 1: The point C can be obtained driving along the solid line (AC), or ap-
proximately, using the velocity field as a first order predictor (dashed line A′C).

1.3 BFECC Method

Following [KLLR07] lets supose that there exists some advection operator L(., .)
performing

Fn+1 = L(u, Fn), (11)

i.e. L(., .) an upwinding or Semi-Lagrangian advection operator; in this way,
consider the Figure 2.

streamline

Fig. 2: Schematic BFECC operation over a streamline field and using L(., .) as
the advection operator for the scalar field F.

Supose for the moment that L(., .) is an exact operator. Following this logic,
after applying a forward and backward step one gets the initial field; that is, the
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error in the advection is zero. However, this is not true due to numerical errors
on the advection operator.

Lets say that the operator contains an error denoted as e. As the same
operator is used by backward and forward steps it can be expected an error of
2e, this is, F̄ = Fn + 2e, so an explicit expression for e can be readily obtained
as

e = −1
2

(
Fn − F̄

)
. (12)

This error can be subtracted from Fn and then advect the field. This method
has been proven to be second order accurate in both, time and space [SFK+08].

Considering the advection operator L(., .) as the Semi-Lagrangian one, BFECC
is defined as follows

F ∗ = L (u, Fn)
F̄ = L (−u, F ∗)
F ∗ = Fn +

(
Fn − F̄

)
/2

Fn+1 = L (u, F ∗).

In this way the order of accuracy of the Semi-Lagrangian scheme can be raised
from one to two increasing the amount of work by a factor of three [SFK+08].

1.4 Poisson equation for pressure

This problem is solved using CG as iterative solver preconditioning the system
using FFT. A complete analysis in this subject can be found in [SPD+13].

It must be said that, for the case of numerical results that are going to be
compared against references, a convergence up to machine precision is used. For
performance interests, only up to 3 iterations are used.

2 Tests

2.1 2D lid-driven cavity

This is a classical internal flow test in a square domain with Lc, the domain
length, as the characteristic dimension. The shear velocity imposed is fixed at
v = 1 varying the kinematic viscosity in order to reach the specified Reynolds
number, ReLc

, defined as

ReLc
=
ρvLc

µ
. (13)

The numerical results obtained at ReLc
= 1000 are shown on Figure 3.

The performance obtained, meassured in [secs/Mcells], this is seconds of
computation in order to compute one million of nodes, is shown on Table 1.

The main drawback in this study case is the Fourier number, Fo, defined as

Fo =
ν∆t

∆x2
, (14)
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Fig. 3: Results obtained at ReLc = 1000 using a grid of 512× 512.

Table 1: 2D lid driven cavity at ReLc
= 1000. Performance, meassured in

[secs/Mcells], obtained by a GPGPU Nvidia GTX 580.

Simple Double

64× 64 1.43 1.58
128× 128 0.38 0.42
256× 256 0.11 0.13
512× 512 0.04 0.06

limiting the time step to a CFL (Courant-Friedrichs-Lewy condition) of ≈ 0.48,
defining CFL as

CFL =
umax∆t

∆min
, (15)

umax being the maximum velocity magnitude and ∆min the minimum grid size.

2.2 2D flow past circular cylinder

This classical external flow test is performed on a computational domain of
L ×H spatial units. The lenght L and height H of the computational domain
are related to the diameter D of the cylinder by a relation close to 1 : 15, this
is, both L and H are 15 times bigger than D. This relation was chosen in order
to minimize the adverse effects of boundary condititions on the computation of
drag (Cd), lift (Cl) and Strouhal (St) coefficients.
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The far field velocity u∞ = (v∞, 0) is fixed on the inlet, outlet, top and
bottom boundaries with v∞ = 1. The kinematic viscosity is adjusted in order to
reach a predefined Reynolds number (ReD).

To compute drag, lift and Strouhal coefficients a momentum balance over a
square region is used. As the approximation purposed assumes that the square
control surface is very close to the (circular) body, the errors (forces) arised from
the square surface can be neglected.

Furthermore, the body is represented as a staircase geometry. No-slip (u = 0)
and no-penetration (∇p · n̂ = 0) are imposed as boundary conditions on the
cylinder.

The results and performance obtained at Re = 1000 are shown on Table 2
and Table 3 respectively.

Table 2: 2D flow past cylinder at ReD = 1000.

Cd Cl St

Present formulation 1.56 1.3 0.211
PFEM-2 [ING+13] 1.639 1.63 0.2475
FEM [MK01] 1.48 1.36 0.21

Table 3: 2D flow past cylinder at ReD = 1000. Performance, meassured in
[secs/Mcells], obtained by a GPGPU Nvidia GTX 580.

Simple Double

256× 128 0.20 0.22
512× 256 0.06 0.09
1024× 512 0.03 0.05

In this case, no Fo constrain is encountered, so a CFL ≈ 4 to 5 can be used.

2.3 3D lid-driven cavity

The numerical results obtained at ReLc
= 1000 are shown on Figure 4, and the

performance obtained is shown on Table 4.
As the main interest of the authors are 3D flows lets analyze the performance

obtained. The same argument will hold for every study case of this article. As
it can be seen in Table 4, for the case of 1283 ≈ 2 [MCells] the performance
obtained is about 20 [MCells/sec]. With this data at hand it is known than
2/20 = 0.1 [secs/timestep], this is, 10 time steps per second can be performed.
As the time step for this case is ∆t = 0.01 [secs] it can be seen that 0.1 [secs]
of simulation can be performed in 1 [sec] of computation.
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Fig. 4: Results obtained at ReLc = 1000 using a grid of 128× 128× 128.

Table 4: 3D lid driven cavity at ReLc
= 1000. Performance, meassured in

[secs/Mcells], obtained by a GPGPU Nvidia GTX 580.

Simple Double

64× 64× 64 0.08 0.19
128× 128× 128 0.05 0.13
192× 192× 192 0.05 0.13

Like the 2D case, the Fo is severely restricting the performance obtained.

2.4 3D flow past circular cylinder

As an extension of the 2D case, the cylinder is now suposed to be infinite at x
dimension. In other words, periodic boundary conditions are going to be used in
that direction.

The results and performance obtained at ReD = 1000 are shown on Table 5
and Table 6 respectively. Lets do the same analysis of the previos study case.
Considering now that no Fo constrain is imposed and ∆t = 0.023 the results
shown that 0.23 [secs] of simulation can be performed in 1 [sec] of computation.
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Table 5: 3D flow past cylinder at Re = 1000.

CD CL St

Experimental 1.00 [Ach72] 0.21 [Ros55]
Present formulation 1.021 0.533 0.183
PFEM-2 [ING+13] 1.16 0.2 to 0.3 0.185
OpenFOAM [ING+13] 1.22 0.5 0.195

Table 6: 3D flow past cylinder at Re = 1000. Performance, meassured in
[secs/Mcells], obtained by a GPGPU Nvidia GTX 580.

Simple Double

64× 256× 256 0.05 0.13

3 Implementation details

The whole Fractinal Step algorithm was implemented in CUDA 1, using the tools
provided by Thrust 2 and Cusp 3 for linear algebra operations. The FFT used was
that provided by CUDA, CUFFT 4 (for performance tests please see [SPD+13]).

Lets divide the Fractional Sep method, roughly, in the main two steps, Mo-
mentum (computing the advection) and Poisson (solving for pressure). The por-
centual amount of work carried by each step, using a previous advection scheme
named QUICK [Leo79], is shown on Figure 5. This scheme was implemented
using shared memory and other considerations in order to perform as high as
possible (the authors considers the implementation of this scheme a fair com-
parison for BFECC).

It can be seen that, the Poisson equation for pressure is the most time con-
suming step when QUICK is used as advection scheme.

Lets consider now the same study but using in this case BFECC as advection
scheme, the results are shown on Figure 6.

It can be concluded that, considering that BFECC can use CFL numbers as
high as ten (or more) times than QUICK, then the computation of the Poisson
step is reduced and, as a consequence, the distribution of work changes. Although
the rate obtained by BFECC is slower than that of QUICK, BFECC becomes
more efficient when CFL > 2 is used.

4 Conclusions

A CUDA implementation of the 3D viscous incompressible Navier-Stokes equa-
tions was presented and its accuracy and performance were obtained using two
1 https://developer.nvidia.com/what_cuda
2 http://code.google.com/p/thrust/
3 http://code.google.com/p/cusp_library/
4 https://developer.nvidia.com/cufft
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Fig. 5: Porcentual division of the two main computations. Advection scheme:
QUICK.
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Fig. 6: Porcentual division of the two main computations. Advection scheme:
BFECC.
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well-known study cases. The results shown good agreement with the references
and, when CFL > 2, BFECC performs better than the previous advection
scheme, QUICK.

It must be recalled that, bodies are stair-case defined and refinements are
being explored by the authors at the moment. Also, new ways of solving diffusion
equations is being studied too.
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