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Abstract. We study the percolation problem of sites on 2D lattices of various

geometries, using general purpose graphic processing units (GPGPU). The im-

plementation of a component labeling parallel algorithm in CUDA and their gen-

eralization to different geometries, is discussed. The results of performance for

this algorithm on a GPU versus the corresponding sequential implementation of

reference on a CPU were analyzed. We present different alternatives of imple-

mentation, considering the generation of samples in both the CPU host and in

the GPU itself, and discussing the synchronization problems that arise. Finally, a

new scheme able to take full advantage of the inherent massiveness of the GPU

processing simultaneously a great number of samples is presented, showing an

significant improvement in the overall performance.

1 Introduction

Since the introduction of graphical processing units (GPUs) for scientific purposes,

many problems have been revitalized interest in data parallel computing because they

offer a cheap and accessible solution for dedicated data parallel applications. The tech-

nological breakthroughs in building graphic processing units of general purpose al-

lowed to win speedups of one or two magnitude orders. The same speedup would be

achieved in CPUs after around ten years, respect with the historical 2x performance

growth every 2 years of CPU architecture [1].

Certainly one of the most attractive and interesting attributes of GPUs is the high

computational throughput due to their large number of processor cores allowing them to

perform a huge amount of calculation with a lower cost of time. Notwithstanding, one

of the mayor problems of the GPU architectures is the parallel programming paradigm:

Single Instruction Multiple Thread. In this way the GPU units favoring resolution of

problems where the amount of data is very large. This can be seen in the optimal be-

havior of the distribution of number of threads and blocks required to make full and

optimal use of a GPU computing capability. In many scientific applications we don’t

need to reach large data sizes, thus neglecting all the advantages of the GPUs. In these

paper we focus in a better implementation of the percolation problem of sites on 2D

lattices using GPUs, from the basic algorithm developed by Kalentev et. al. [2], and

generalized to various geometries.

The percolation problem has been increasingly considered in statistical physics.

One reason for this current interest is that become clear that generalizations of the pure

percolation problem are likely to have extensive applications in science and technol-

ogy. [3,4,5] These applications range from image processing and segmentation to crack
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study in material science [6,7]. Although it is a purely geometric phenomenon, the

phase transition involved in the process can be described in terms of an usual second-

order phase transition. This mapping to critical phenomena made percolation a full part

of the theoretical framework of collective phenomena and statistical physics.

The central idea of the pure percolation theory is find the lowest concentration of el-

ements whether or links for which a extends from one side of the system to the opposite

side thereof. This particular concentration value is known as the percolation threshold

or critical concentration and determines a phase transition in the system [3]. Thus, in

the random percolation model, a single site (or link connecting two sites) is occupied

with probability p (empty with probability 1 − p). For the exact value of p = pc, the

percolation threshold of sites (links), there is at least one cluster expanded by connect-

ing the edges of the system. In that case, a second order transition appears pc which is

characterized by well-defined critical exponents.

2 Methods

Component Labeling Algorithm

This algorithm is similar to the well-known Hoshen-Kopelman algorithm [8] and their

parallel versions [9,2]. It consists in the following steps:

1) Initialization: assign to each occupied site a unique label (i.e equal to the site index)

and build a list of references.
2) Linking: on each occupied site, choose the smallest nonzero label between c + 1

elements, the site itself and its c nearest neighbors. Assign this label to the reference

of the site.
3) Relabeling: on each occupied site, search in the references tree until to reach the

root, and assign this label to the site.
4) Repeat from step 2) until there is no more changes in the list of references.

It is worth to note that there is no need of atomic operations to implement the condition

in step 4) which would slowed down the computation dramatically due to their syn-

chronous nature. The search operation in step 3) works remarkably fast since the steps

performed previously make the later ones shorter.

GPU Implementation. We consider samples of L × L sites arranged on square and

triangular geometries. Our implementation is significantly improved by processing si-

multaneously a great number of samples in such a way to maintain the GPU resources

occupation near the optimum (we assign one thread per site). Series of empty bor-

der sites (or pads) are used to have open border conditions in each sample, as well as

to separate independent samples during the component labeling process (see Fig. 1).

This avoid the use of extra conditioning in the border sites. Also, usual optimizations

have been applied, such as the use of low-latency memory whenever possible, or the

use of optimized CUDA libraries for pseudorandom generation in order to generate

the samples in the GPU itself, minimizing the communication with the host through

the PCI-e bus. All the Tests were performed on a Intel i7 3770 (3.5GHz), 4GB DD3

(1333), NVIDIA GeForce GTX480 (Fermi, 480 cores), 1.5GB GDDR5, 384-bits, with

gcc 4.1.1 (-O3 optimization) and CUDA 4.2.
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Fig. 1. Simulation scheme of R samples processed simultaneously on GPU. Each sample repre-

sents a different disorder realizations. In this way we obtain an optimal use of resources of the

GPU. The empty sites in the border (or pads) are represented by zeros in the data matrix and the

occupied site is represented by a gray rectangle.

CPU Implementation. The tests were performed on a Intel i7 3770 (3.5GHz), 4GB

DD3 (1333). An implementation of the union-and-find algorithm (which is computa-

tionally equivalent to the Hoshen-Kopelman algorithm) that was compiled with gcc

4.1.1 (-O3 optimization).

3 Results

For a comparative of the performance, the running time per sample of the serial ver-

sion of reference on CPU and the corresponding implementation on GPU are shown in

Tables 1 and 2. For the sake of clarity, the number of simultaneous samples was fixed

to R = 15 for all the system sizes so that the resources occupation of the GPU for the

largest system was maximum (near 100%). As expected, this methodology is reflected

in the size dependence of the speed-up where, for small systems, the utilization of the

GPU is far from the optimal, starting with 2% for the first size.

Table 1. Processing time per sample, measured at the critical concentration pc = 0.5932 for the

square lattice of L × L sites.

Time(ms)

256 × 256 512 × 512 1024 × 1024 2048 × 2048

CPU 10.26 24.15 103.14 530.8

GPUs 8.14 2.04 7.54 26.4

Speed-up 1.26 11.84 13.68 20.11
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Table 2. Processing time per sample, measured at the critical concentration pc = 0.5 for the

triangular lattice of L × L sites.

Time(ms)

256 × 256 512 × 512 1024 × 1024 2048 × 2048

CPU 7.16 25.1 106.3 469.87

GPUs 2.68 5.06 7.15 27.1

Speed-up 2.67 4.96 14.87 17.34

4 Summary

The use of graphic processors for parallel processing shows a significant improvement

in performance for the percolation problem. The massively parallel implementation of

the component labeling algorithm allows not only detect the occurrence of a percolation

cluster but also obtain the complete cluster size distribution of the sample. In general,

the study of the percolation systems do not require excessively large sizes to simulate as

through finite size scaling techniques we can infer the behavior of the infinite system. To

achieve an optimum use of the GPU resources, it is prefered instead to simulate several

samples simultaneously, which results in an extra order of magnitude in performance for

the largest system size considered. On the other hand, for smaller systems the speed-up

reflects the poor occupation of the GPU resources.
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