
Heterogeneous Resource Allocation in the
OurGrid Middleware: A Greedy Approach

Miguel Da Silva and Sergio Nesmachnow

Centro de Cálculo, Facultad de Ingenieŕıa,
Universidad de la República, Montevideo, Uruguay

{mdasilva,sergion}@fing.edu.uy

Abstract. OurGrid is an open source grid middleware that enables the
creation of peer-to-peer computational grids to speed up the execution of
bag-of-tasks applications. This article addresses the scheduling problem
arising when the participants of the grid contribute with heterogeneous
resources having different computing power, by studying the application
of a greedy approach for selecting and assigning resources to jobs submit-
ted for execution in a cooperative grid. The proposed method has been
incorporated to the OurGrid code. The experimental analysis performed
over a set of 90 realistic problem instances following both the related and
unrelated machines model demonstrates that significant execution time
improvements over the standard scheduling policy are obtained: about
30-35% overall, and 25-30% for large grid scenarios.

1 Introduction

Grid computing is a paradigm for parallel/distributed computing that allows
the integration (federation) of many computer resources from diverse locations
worldwide, in order to provide a powerful integrated computing platform that al-
lows solving applications with high computing demands. This paradigm has been
increasingly employed to solve complex problems (i.e. e-Science, optimization,
simulation, etc.) in the last ten years [11].

Grid infrastructures are conceived as a large loosely-coupled virtual super-
computer formed by many heterogeneous platforms of different characteristics,
usually working with batch (i.e. non-interactive) workloads with a large num-
ber of files. Grid infrastructures have made it feasible to provide pervasive and
cost-effective access to distributed computing resources for solving hard prob-
lems [10]. Starting from studies on small grids in the earlier 2000’s, nowadays grid
computing is a consolidated field of research in Computer Science and many grid
infrastructures are widely available. As of 2012, more than 12 PFLOPS (i.e. 1015

floating point operations per second) are available in the current more powerful
grid system, from the Folding@home project.

Many kinds of computer systems can be used in order to create a grid; from
super-computers to low-cost personal computers. As a consequence of this fea-
ture, an important problem appears: finding an appropriate allocation of re-
sources in a grid environment composed by the aggregation of heterogeneous
resources with different computing power [9, 16].

HPCLatAm 2013, pp. 49-60 (full paper)
Session: Evolutionary Computation & Scheduling

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

Allocation or scheduling is a key problem to achieve efficiency when using
grid systems. The goal is to assign tasks to the computing resources by reflecting
some user- and system-centric objectives and satisfying some efficiency criteria,
usually related to the execution time, resource utilization, economic cost, etc.

In this work, we focus on a specific case of the independent tasks model, which
is relevant for grid infrastructures: the case of Bag-of-Task (BoT) applications
(jobs). In the independent tasks model, tasks within a job are assumed to have no
dependencies between them, and they arrive to the scheduler from the different
grid users. The scheduler collects and maps the tasks into the grid resources with
a given frequency, to optimize some criteria. The BoT model typically arises in
grid and volunteer-based computing infrastructures –such as OurGrid, Teragrid,
Berkeley’s BOINC, Xgrid, etc. [5]–, where applications using Single-Program
Multiple-Data domain decomposition are very often submitted for execution to
solve problems such as multimedia processing, parameter sweeps, data mining,
parallel numerical models for physical phenomena, simulations, and computa-
tional biology. Thus, the relevance of the scheduling problem faced in this work
is justified due to its significance in realistic grid environments.

We study the resource assignment in the OurGrid open source grid middle-
ware, a modern tool for developing peer-to-peer grid and volunteer-computing
platforms [8] (see a description of OurGrid in Section 2). The standard resource
allocation policy used by OurGrid does not support resource heterogeneity. It
works following a round-robin approach, which allows achieving good perfor-
mance allocation results for homogeneous systems [8]. The main motivation of
the research reported in our article is to enhance the OurGrid middleware with a
more efficient resource policy, capable of handling heterogeneity. The proposed
scheduling method is based on a greedy algorithm that searches for the most
suitable computing resources for each new task available to execute.

The main contributions of the research reported in this article are: i) a new
greedy approach for resource allocation in OurGrid is developed; ii) the proposed
method is implemented within the OurSim simulator for OurGrid computing in-
frastructures, as well as all the features needed to make a site aware of the local
resources available and their computing power, and iii) an experimental evalu-
ation is performed in order to evaluate the results of the proposed scheduling
method, by using realistic workloads and scenarios generated following a specific
methodology. All the contributions to the OurSim code have been sent to be
included in the official release of the OurGrid middleware.

The rest of the manuscript is organized as follows. Section 2 introduces the
OurGrid middleware and explains the components comprising a regular OurGrid
site. Section 3 accounts for the main concepts about heterogeneous computing
(HC) environments and the problem scenarios used in this work. A review of
relevant related works in the area is included in Section 4. The new greedy
scheduling method for OurGrid is formally described in Section 5. After that,
Section 6 presents the experimental analysis to validate the proposed approach,
and the main results are reported and discussed. Finally, Section 7 presents the
conclusions of the research and formulates the main lines for future work.

HPCLatAm 2013 - Page 50

2 The OurGrid Middleware

OurGrid is an open source grid middleware based on a peer-to-peer architecture,
developed by researchers of Universidade Federal de Campina Grande (UFCG),
Brazil [8]. This middleware enables the creation of peer-to-peer computational
grids, and it is intended to speed up the execution of BoT applications.

The OurGrid architecture is built by aggregating several participants in a grid
environment, allowing them to use remote and local resources to run their appli-
cations. OurGrid uses the eXtensible Messaging and Presence Protocol (XMPP),
an open technology for real-time communication which powers a wide range of
applications, including instant messaging, presence, multi-party chat, voice and
video calls, collaboration, lightweight middleware, content syndication, and gen-
eralized routing of XML data. XMPP allows federation, it is Internet-friendly,
and efficient, since several services can use the same XMPP server.

2.1 OurGrid Components

The main components of the OurGrid architecture are:

– The broker, which implements the user interface to the grid. By using the
broker, the users can submit jobs to the grid and also track their execution.
All the interaction between the user and the grid infrastructure is performed
through the broker.

– The workers, which are the component which are responsible for processing
the jobs submitted to the grid. Each worker represents a real computing re-
source. OurGrid workers support virtualization, and so they offer an isolated
platform for executing jobs comprising no risks to the local system running
the component.

– The peers, which has a twofold role. From the point of view of the user, it is
responsible to search and allocate corresponding computing resources for the
execution of his jobs. From the point of view of the infrastructure (implicitly,
for the administrator of the site) the peer is responsible for determining
which workers can be used to execute an application, and also how they
will be used. When the scheduling algorithm is executed, the resources to be
assigned to execute a given application will be selected among those available
in the grid. Normally, it is enough to have one peer per site. Communication
between peers makes possible to execute jobs remotely; in case that the local
resources are not enough for satisfying the requirements of a job, the peer
seeks for additional resources available in remote sites.

– The discovery service, which keeps updated information about the sites com-
prising the grid, and it is used to find out the end points that peers should
use to directly communicate with each other.

All this components are integrated in a transparent way to the user, allowing
the grid to provide a single-image of an infrastructure with a large computing
power. A description of the Ourgrid architecture is shown for a sample grid
environment in Figure 1.

HPCLatAm 2013 - Page 51

Fig. 1. Ourgrid architecture example

2.2 OurSim and Synthetic Applications

OurSim [6] is a discrete-events simulator that allows creating a virtual grid
infrastructure, including all the components of a typical OurGrid installation:

To use OurSim, a simulation, i.e. a set of files describing the site and a set
of jobs to be run is mandatory. The job files can be generated automatically by
OurSim. Jobs generated using this procedure are called synthetic applications,
Three essential features have been chosen for the tests proposed in this work:
(a) number of sites (peers), (b) number of users (workers) per site and (c) whole
duration (period) for the set of jobs generated. Once the files describing the grid
and the set of applications are available, a simulation can be executed.

The experimental evaluation of the new scheduling policy proposed in this
article is performed using OurSim and realistic grid workload and scenarios. The
OurSim simulations are used to avoid deploying many Ourgrid sites for the ex-
periments. Since OurSim implements exactly the same scheduling functions than
the Ourgrid middleware, all results are valid also for the Ourgrid middleware.

3 Heterogeneous Grid Computing

Nowadays, building distributed computing platforms by gathering heterogeneous
resources is very common. When using this kind of collaborative grid infrastruc-
tures, the computing power of the grid workers may vary significantly.

Our proposal in this article is to account for heterogeneity in collaborative
grids using the OurGrid middleware. The greedy scheduling approach is tested
using simulated OurGrid infrastructures which considers realistic computing el-
ement with diverse computing power. The execution time results of the greedy
resource allocation policy are then compared to the ones obtained when the
standard allocation resource method is used by OurGrid.

HPCLatAm 2013 - Page 52

We use as a reference baseline the heterogeneity model for the Heterogeneous
Computing Scheduling Problem (HCSP) [14,15] and the methodology for creat-
ing HCSP instances described in [13]. To model grid heterogeneity, two relevant
features are taken into account for machines: the number of cores (#C) and
the number of operations from the SSJ SPEC benchmark results (SSJ ops) [19].
SSJ ops is the average value of operations per second reported when solving the
standard benchmark SSJ, and it is used in order to take into account a realistic
value for the computing power of a given computer. We avoided using the max-
imum theoretical GFLOPS reported for each vendor, since this is a peak value
that usually does not reflect the real computing capacities of the machine. The
data used to generate the grid scenarios are presented in Table 1.

In order to define a specific methodology to select the computing elements
within a specific grid scenario, we model the resource heterogeneity regarding
the standard deviation in the SSJ operations per core (σC). According to σC ,
three heterogeneity categories for scenarios are defined: low (σC < 36%), medium
(36 < σC < 44%), and high (σC > 44%). For each experiment performed using
the OurSim simulator, each site can be classified regarding these categories.

Two models widely used in literature to represent HC scenarios are consid-
ered: the related machines model [2] and the unrelated machines model [12]. For
the related machines model, each task ti demands a fixed number of operations
TO(ti), and in a grid scenario the processing time of task i in machine j is
ET (ti,mj) = TO(ti)/SSJ ops(mj). Unrelated machines scenarios are built by
defining different heterogeneity levels for each site. Using OurSim it is easy to
define the heterogeneity level for a site: when creating the virtual grid, the char-
acteristics for each component can be configured by selecting the appropriate
computing resources to match the corresponding intra-site heterogeneity level.

Table 1. Details of the processors used in the experimental evaluation

processor #C SSJ ops # processor #C SSJ ops # processor #C SSJ ops

1 AMD Opteron 6238 48 1898162 25 Intel Xeon E5-2670 16 1394534 49 Intel Xeon E5-2660 16 1204440
2 AMD Opteron 6238 24 987946 26 Intel Xeon E5-2450L 16 1006482 50 Intel Xeon E5-2470 16 1496064
3 Intel Xeon E5-2670 16 1236124 27 Intel Xeon E5-2470 16 1328249 51 Intel Xeon E5-2470 16 1511097
4 Intel Xeon E5-2660 16 1280523 28 Intel Xeon E5-2450 16 1254329 52 Intel Xeon E5-2640 12 1028960
5 Intel Xeon E5-2650L 16 959239 29 Intel Xeon E5-2440 12 986986 53 Intel Xeon E5-2630 12 961609
6 Intel Xeon E5-2670 16 1336479 30 Intel Xeon E5-4640 32 2395181 54 Intel Xeon E5-2665 16 1365171
7 Intel Xeon E5-2650L 16 960074 31 Intel Xeon E5-4640 32 2402711 55 Intel Xeon E5-2640 12 990555
8 Intel Xeon E5-2680 16 1426130 32 Intel Xeon E5-2640 12 1034209 56 Intel Xeon E5-2665 16 1347230
9 AMD Opteron 6276 64 2220373 33 Intel Xeon E5-2665 16 1337393 57 Intel Xeon E5-2660 16 1446931
10 AMD Opteron 6278 64 2296333 34 AMD Opteron 6278 32 1233423 58 Intel Xeon E5-2660 16 1447399
11 Intel Xeon E5-2660 16 1304143 35 Intel Xeon E5-2640 12 1007444 59 Intel Xeon E5-4650L 32 2790966
12 Intel Xeon E5-2660 16 1308474 36 Intel Xeon E5-2665 16 1347230 60 Intel Xeon E5-2660 16 1432829
13 Intel Xeon E5-2660 16 1316689 37 AMD Opteron 6278 64 2331362 61 AMD Opteron 6380 32 1660274
14 Intel Xeon E5-4650L 32 2540179 38 Intel Xeon E5-4640 32 2347591 62 Intel Xeon E5-2660 16 1450305
15 Intel Xeon E5-2470 16 1187945 39 Intel Xeon E5-2470 16 1367462 63 Intel Xeon E5-2660 16 1459934
16 Intel Xeon E5-2660 16 1290357 40 Intel Xeon E3-1240V 24 467481 64 Intel Xeon E5-2470 16 1482687
17 Intel Xeon E5-2660 16 1338554 41 Intel Xeon E5-2470 16 1516025 65 Intel Xeon E5-2470 16 1463219
18 Intel Xeon E3-1265LV 24 416999 42 Intel Xeon E5-4640 32 2619038 66 Intel Xeon E5-2470 16 1288201
19 Intel Xeon E3-1265LV 24 420255 43 Intel Xeon E5-2470 16 1329468 67 Intel Xeon E5-2670 16 1448093
20 Intel Xeon E5-2660 16 1309437 44 Intel Xeon E5-2670 16 1401473 68 AMD Opteron 4376 HE 16 843336
21 Intel Xeon E5-2660 16 1306867 45 Intel Xeon E5-2470 16 1327737 69 AMD Opteron 4386 16 971064
22 Intel Xeon E5-2660 16 1246966 46 Intel Xeon E5-2470 8 670220 70 AMD Opteron 4310 EE 8 373385
23 Intel Xeon E5-2660 16 1297229 47 Intel Xeon E5-2470 8 671815
24 Intel Xeon E5-2650L 16 1007084 48 Intel Xeon E5-2470 16 1384613

4 Related Work

Several works have addressed different variants of the grid scheduling problem
using greedy algorithms in the last years.

Beaumont et al. [4] tackled the problem of assigning a set of clients with
demands to a set of servers with capacities and degree constraints. Two versions
of the problem are considered: static (clients are known beforehand), and dy-
namic (clients can join or leave the grid it at any time). Several methods are
introduced: SEQ, OSEQ, and the three greedy schedulers: LCLS, LCBC, and
OBC. The evaluation showed that SEQ had the better performance for the static
version, and for the dynamic case OSEQ outperformed both LCBC and LCLS.

Singh and Kant [18] addressed the problem of efficient use of resources and
minimization of turnaround time using a greedy method that chooses resources
on the basis of computing power. The authors deal with the approach where
jobs are submitted on resources where the data must be transferred to. The
experimental analysis compares the greedy algorithm against a random selection
of resources and a sequential assignment method, using the GrimSim simulator.
According to the reported results, the sequential assignment reduces the average
turnaround time by 53% over the random selection, and the greedy method
reduces the average turnaround time by 14% over the sequential assignment.

Buss et al. [7] proposed three greedy methods to allocate and exchange grid
services for efficiently trading markets (defined as the space where resource own-
ers and resources consumers can agree the allocation of the resources based
on consumers needs) and resource allocation. The experimental evaluation per-
formed using stochastic simulation for a set of 50 instances with both numbers of
owners and consumers chosen between 20 and 120 allowed to conclude that the
greedy solutions presented are less expensive in terms of computational effort.

Zhu et al. [20] defined the Greedy-Search Based Service Location Problem
and provided a theoretical model to analyze the influence of the network topol-
ogy. A greedy method is introduced for service location and analysis, and the
authors show that under reasonable conditions, it can achieve good result even
in a practical large community, specially when comparing the QoS and fault tol-
erance against DHT Gnutella-like, and Napster-like systems. The experimental
analysis shows that if the node degree is about 10∼20, under some assumptions
a node with relative high QoS level is to be find in short hops.

Besides the previous publications, which tackle specific features of realistic
grid infrastructures, many articles have proposed heuristic and metaheuristics
methods for solving the grid scheduling problem from the point of view of op-
timization (see a review on our articles tackling the HCSP [14, 15]). However,
these works often do not address for realistic features of grid systems and/or
they do not use any grid or simulated grid in their experimental evaluation.

In addition, the review of the related work allows to conclude that there are
few articles dealing with real grid systems and no implementations over current
grid middlewares. Our work here provides a real contribution in this topic, as
the proposed method is implemented in a real middleware and the experimental
analysis is performed on realistic grid instances.

HPCLatAm 2013 - Page 54

5 The Greedy Scheduling Approach for OurGrid

This section describes both the traditional and the new greedy approach pro-
posed for scheduling in heterogeneous grid infrastructures using OurGrid.

5.1 Traditional Resource Allocation in OurGrid

OurGrid uses a traditional round-robin-like allocation policy to assign computing
resources to newly arrived tasks. Each time a user submit a job, he will have to
access the grid infrastructure through a broker. The user must describe the set
of tasks in the submitted job by using a job description file (JDF).

Once a job is submitted, the broker contacts the local peer to ask for a set of
resources that satisfy the user requirements for executing the job. The peer uses
the JDF created by the user to search for an appropriate set of workers to fulfill
the request. The peer first searches in the local site and, if no local worker fulfills
the computing requirements, the peer will contact another peer (if any) to ask
for resources. If no remote sites can satisfy the request, the job is scheduled such
that its tasks are inserted in the local resources execution queue.

The scheduling policy in Ourgrid is “first coming task to first discovered
resource”. Implicitly, the computing resources within each site are ordered ac-
cording to the time the peer registers in the grid. This ordering is then used to
search for appropriate workers each time that a new request for task execution
is received. By looking sequentially into the list of workers, the first one found
that fulfills the task requirements is selected to be allocated to a given task.

The resource allocation policy in OurGrid uses the Network of Favours [3],
which encourages the resource contribution to the network. The reputation of a
given peer increases when it collaborates to execute a task from another peer.
In that case, the peer that requested the execution keeps a local record that it
owes a favour to the former one. Favours are taken into account when a peer has
idle resources that are requested to be used by other peers. The favour count is
used to prioritize the peers requests, and workers will be assigned to tasks of the
peer that has contributed the most with the local peer.

Different mechanisms are used by others grid middlewares to prioritize nodes
requesting resources. For example, the Condor middleware implements a C-like
language called control expressions that allows a user to set the constraints and
preferences of his jobs. Therefore, a user can chose machines according to its
computing power; Condor middleware is responsible to rank the machines and
assign the most suitable one to the each user job.

5.2 Changing the Way OurGrid Allocates Resources

Using the traditional Ourgrid scheduler, once a suitable resource is found for a
given task, peers do not check any further. The greedy allocation policy provides
OurGrid with a more efficient method for scheduling. By taking into account the
computing capability of workers, the greedy scheduler allows executing incoming
tasks faster, thus resulting in a better response time for the users.

HPCLatAm 2013 - Page 55

The processing power was chosen as the main feature to rank the workers,
because most grid and volunteer computing systems are mainly used to execute
computing-intensive tasks (simulation, optimization, data mining) [10], and users
are always interested in executing their tasks in the shortest time possible.

The proposed greedy scheduler can be classified into the category of dy-
namic priority scheduling algorithms [17]. This class comprises many determin-
istic scheduling methods that work by assigning priorities on-line, based on a
particular criterion, during the execution of the job. In our case, the criterion
used to determine the priorities is the expected finishing time of a given task,
which is inversely proportional to the computing power of each worker.

The greedy approach proposed for task allocation (see Algorithm 1) searches
for available resources and creates a list with the resources found in descending
order according to the computing power. Once the list of available resources is
created, the scheduler will assign as many resources as possible to the brokers
with pending tasks to be processed (tasks are ordered according to the arrival
time of the job they belong to). The assignment stops if no more resources are
available or the requirements are fulfilled. The scheduling algorithm is executed
each time that a new task arrives to the system.

When using the greedy allocation resource policy, a site providing workers
with higher computing power has more chances to get the resources assigned if
the request is done to a site it have given favours before.

1 declare response, posWksToAllocateOrd: list of objects of type Allocation;
2 declare tmpWorker, allocWorker: type Worker;
3 declare allocTmp: type Allocation;
4 {response, posWksToAllocateOrd} ← empty list;
5 {tmpWorker, allocWorker, allocTmp} ← null;
6 forall the W in possibleWorkersToAllocate do
7 if posWksToAllocateOrd.Empty() then
8 add W to posWksToAllocateOrd ;
9 else

10 allocWorker ← W .load data();
11 boolean ordering ← true;
12 int indexOrd← 0;
13 while posWksToAllocateOrd.notEmpty() ∧ ordering do
14 allocTmp← posWksToAllocateOrd.next();
15 tmpWorker ← allocTmp.load data();
16 if allocWorker.cpuPower() ≥ tmpWorker.cpuPower() then
17 ordering ← false;
18 else
19 indexOrd← indexOrd + 1;
20 end
21 end
22 add alloc to posWksToAllocateOrd in position indexOrd;
23 end

24 end
25 while i < allocationsLeft ∧ posWksToAllocateOrd.notEmpty() do
26 add posWksToAllocateOrd.next() to response;
27 end

28 return response

Algorithm 1: Greedy scheduling algorithm in OurGrid

HPCLatAm 2013 - Page 56

Both OurGrid and OurSim are implemented using Java. The greedy method
was implemented over the OurSim code. When a job is submitted, the peer ex-
ecute a sequence of Java methods in order to select workers. At the end of this
sequence, a method called takeNeededWorkers is executed and a resource allo-
cation policy is applied. This method belongs to the Java class AllocationHelper.

To implement the greedy resource allocation policy, the method takeNeeded-
Workers was completely rewriten. Its signature had to be changed in such a way
that when it is invoked, OurSim can select the workers based on its computing
power. Other Java classes which invoke takeNeededWorkers were also changed
(SamePriorityAllocationHelper and LowerPriorityAllocationHelper).

6 Experimental Analysis

This section presents the experimental evaluation of the greedy scheduler, by
comparing its results with against those computed using the regular Ourgrid
policy over a wide range of problem instances.

6.1 Grid Scenarios

The greedy approach was tested using OurGrid simulated infrastructures, con-
sidering workers with different computing power. The analysis was carried out
on unrelated machines scenarios (with low/medium/high heterogeneity) and di-
mension 1, 10, and 100 sites, and using the unrelated machine model with sites
having different heterogeneity levels, and dimension 10 and 100 sites. A total
number of 30 instances per scenario were used. The number of workers per site
is 8, 16, 32 or 64, chosen using an uniform distribution, and computing power
chosen according to Table 1, such that the three heterogeneity levels are satisfied.

Workloads are based on synthetic applications to represent jobs submitted to
the grid. Three main features were configured to stress the infrastructure, thus
few jobs would be treated in the same way by both scheduling algorithms: (a) the
number of peers, (b) the number of brokers and (c) the duration of the simulation
(3, 6, or 12 months, used to set the number of jobs). All problem instances were
generated following the related and unrelated machine models and the Expected
Time to Compute (ETC) estimation model by Ali et al. [1], following the method-
ology described in our previous work [13]. The problem instances are available
to download at http://www.fing.edu.uy/inco/grupos/cecal/hpc/GSOS.

6.2 Numerical Results

Execution time. Table 2 summarizes the execution time results, reporting the av-
erage improvements of the greedy scheduler for each model/heterogeneity level.

The results in Table 2 demonstrate that the greedy scheduler outperformed
the traditional one for all grid instances and workloads. Although in a few specific
cases the standard policy obtained shorter (less than 2.5%) times, in average,
the greedy approach significantly outperformed the traditional method.

HPCLatAm 2013 - Page 57

Table 2. Improvements of the grid scheduler over the traditional scheduler

d
a
ta

peers 1 10 100
months 3 6 12 3 6 12 3 6 12

avg. # jobs 1995 5323 9485 24310 44778 89281 231089 439339 904624
avg. #workers 27.20 45.35 18.40 23.33 25.60 18.12 29.77 33.17 30.70

im
p
ro
v.
(%

)

re
la
te
d low 25.65 21.73 25.23 16.16 18.14 16.36 24.41 26.50 29.65

medium 13.08 15.19 14.50 49.33 56.22 47.01 23.71 25.38 27.14
high 117.65 84.63 105.57 35.58 35.18 38.23 27.11 24.02 24.49

unrelated — — — 23.89 24.41 23.84 24.76 25.47 28.68

The traditional scheduling mechanism do not take advantage of the com-
puting capabilities of the workers, and those resources better suited to execute
a given task may be idle instead of processing. On the other hand, the greedy
approach focuses on keeping these resources busy as much as possible by trying
to select them each time the scheduling algorithm is executed.

As the number of the peers increases, the execution time improvement sta-
bilizes near 25-30%, mainly due to the necessary network communications be-
tween peers to transfer data to remote workers. The results show that even in
such situation, the greedy scheduling algorithm is a more effective method for
resource allocation once the data is available at the remote peer.

The high improvements for high heterogeneity scenarios with only one peer
are due to long tasks, assigned by the traditional scheduling mechanism to a
worker with small computing power. As there are no more peers to look for
idle resources, tasks have to wait in the workers queues. Meanwhile, the greedy
scheduler rationally uses those workers with high computing capabilities.

Figure 2 graphically summarizes the average improvements results obtained
by the grid scheduler for each tackled problem model and dimension.

Fig. 2. Average improvements of the greedy scheduler over the traditional policy

HPCLatAm 2013 - Page 58

Load balancing. We also studied the load balancing for both scheduling meth-
ods. Figure 3 reports the loads for a representative execution of both scheduling
algorithms, showing the improvement of the greedy scheduler (normalized load
st.dev.=26.9%) when compared with the traditional scheduler (normalized load
st.dev.=71.2%). The greedy scheduler applies a kind of Optimistic Load Balanc-
ing strategy [2] that allows a better load distribution over the available workers.

Fig. 3. Load balancing study for a representative execution

7 Conclusions and Future Work

This article presented an experimental study of applying a greedy resource allo-
cation policy in the OurGrid middleware. After reviewing OurGrid and related
works on the topic, a specific greedy scheduler that takes into account the com-
puting power of workers was designed and implemented into OurGrid/OurSim.

The experimental analysis of the proposed method was carried out using
OurSim and grid instances of different dimensions, and following both unre-
lated and related machines model. The experimental results demonstrate that
the greedy scheduler is an effective method for reducing the overall execution
time of BoT jobs. In average, the execution time improvements of the greedy
scheduler over the traditional policy in OurGrid is about 30-35%, and it tends
to stabilize about 25-30% for large scenarios and simulation periods. Speedup
and heterogeneity level are not related, but the number of peers do impact in
the execution time improvements. Nevertheless, the greedy scheduling allocation
policy select more suitable workers than the standard policy in most cases.

The proposed greedy scheduling method is now available within the official
distribution of the OurGrid/OurSim code.

The main lines for future work include improving the methods for selecting
remote workers and studying new scheduling policies, by taking into account
other resource selection criteria (i.e. node reliability and energy consumption).
Additional scalability studies regarding the numbers of brokers per site for both
static (known number of brokers) and dynamic (brokers can register and unreg-
ister from a peer) scenarios should be performed.

HPCLatAm 2013 - Page 59

References

1. S. Ali, H. J. Siegel, M. Maheswaran, S. Ali, and D. Hensgen. Task execution time
modeling for heterogeneous computing systems. In Proc. of the 9th Heterogeneous
Computing Workshop, page 185, Washington DC, USA, 2000.

2. P. Ambrosio and V. Auletta. Deterministic monotone algorithms for scheduling
on related machines. Theoretical Computer Science, 406:173–186, 2008.

3. N. Andrade, F. Brasileiro, W. Cirne, and M. Mowbray. Automatic grid assembly by
promoting collaboration in peer-to-peer grids. Journal of Parallel and Distributed
Computing, 67(8):957–966, August 2007.

4. O. Beaumont, L. Eyraud-Dubois, C. Caro, and H. Rejeb. Heterogeneous resource
allocation under degree constraints. IEEE Transactions on Parallel and Distributed
Systems, 24(5):926–937, 2013.

5. F. Berman, G. Fox, and A. Hey. Grid Computing: Making the Global Infrastructure
a Reality. Wiley, New York, NY, USA, 2003.

6. F .Brasileiro and M.Carvalho. A user-based model of grid computing workloads.
In ACM/IEEE 13th Int. Conf. on Grid Computing, pages 40–48, 2012.

7. G. Buss, K. Lee, and D. Veit. Scalable grid resource trading with greedy heuristics.
In Int. Conf. on Complex, Intelligent and Software Intensive Systems, pages 427–
432, 2010.

8. W. Cirne, F. Brasileiro, N. Andrade, L. Costa, R. Novaes, and M. Mowbray. Labs
of the world, unite!!! Journal of Grid Computing, 4:225–246, 2006.

9. H. Dail, O. Sievert, F. Berman, H. Casanova, A. YarKhan, S. Vadhiyar, J. Don-
garra, C. Liu, L. Yang, D. Angulo, and I. Foster. Grid resource management,
chapter Scheduling in the Grid application development software project, pages
73–98. Kluwer Academic Publishers, 2004.

10. I. Foster and C. Kesselman. The Grid 2: Blueprint for a Future Computing Infras-
tructure. Morgan Kaufmann Publishers, 2003.

11. J. Joseph and C. Fellenstein. Grid Computing. Pearson Education, 2004.
12. J. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms for scheduling

unrelated parallel machines. Mathematical Programming, 46(3):259–271, 1990.
13. S. Nesmachnow, B.Dorronsoro, J. Pecero, and P.Bouvry. Energy-aware scheduling

on multicore heterogeneous grid computing systems. Journal of Grid Computing,
2013. Online first, May 2013. DOI: 10.1007/s10723-013-9258-3.

14. S. Nesmachnow, H. Cancela, and E. Alba. Heterogeneous computing scheduling
with evolutionary algorithms. Soft Computing, 15(4):685–701, 2010.

15. S. Nesmachnow, H. Cancela, and E. Alba. A parallel micro evolutionary algo-
rithm for heterogeneous computing and grid scheduling. Applied Soft Computing,
12(2):626–639, 2012.

16. A. Pugliese, D. Talia, and R. Yahyapour. Modeling and supporting grid scheduling.
Journal of Grid Computing, 6:195–213, 2008.

17. K. Ramamritham and J. A. Stankovic. Scheduling algorithms and operating sys-
tems support for real-time systems. Proc. of the IEEE, 82(1):55–67, 1994.

18. S. Singh and K. Kant. Greedy grid scheduling algorithm in dynamic job submis-
sion environment. In Int. Conf. on Emerging Trends in Electrical and Computer
Technology, pages 933–936, 2011.

19. SPEC. Standard performance evaluation corporation, SPECpower ssj2008, 2011.
Available online at http://www.spec.org/power ssj2008. Accessed May 2013.

20. C. Zhu, Z. Liu, W. Zhang, W. Xiao, and D. Yang. Analysis on greedy-search based
service location in P2P service grid. In 3rd Int. Conf. on Peer-to-Peer Computing,
pages 110–117, 2003.

HPCLatAm 2013 - Page 60

