
Two Models for Parallel Differential Evolution?

Maŕıa Laura Tardivo1,2,3, Paola Caymes-Scutari2,3, Miguel
Méndez-Garabetti2,3 and Germán Bianchini2

1 Departamento de Computación, Universidad Nacional de Ŕıo Cuarto.
(X5804BYA) Ŕıo Cuarto, Córdoba, Argentina

2 Laboratorio de Investigación en Cómputo Paralelo/Distribuido (LICPaD)
Departamento de Ingenieŕıa en Sistemas de Información, Facultad Regional Mendoza

Universidad Tecnológica Nacional. (M5502AJE) Mendoza, Argentina
3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

Abstract. In the area of scientific research there are countless opti-
mization problems that can not be exactly solved by a computer in a
reasonable time. Advances in computing science have addressed with
these problems developing different techniques that attempt to approxi-
mate the exact solutions. Among them, the Differential Evolution (DE)
algorithm is a method of common choice. Numerous applications have
demonstrated the potential of the method in problem solving, naming
efficiency, convergence and robustness. Moreover, by the nature of the
algorithm, there are several approaches for transforming its sequential
processing scheme into a parallel one, so as to increase the computa-
tional speed without neglecting the solutions quality.
This paper presents two parallel alternatives to the classical Differential
Evolution algorithm. Both proposals are based on an island model, a
ring interconnection topology and a population migration strategy, whose
advantages and drawbacks are presented. They have been proved with
a set of benchmark functions considering different configurations for the
parameters of DE, and they have also been analyzed according to explicit
performance measurements.

1 Introduction

One of the research areas in computer science is the study of strategies for solving
certain problems that can not be solved by deterministic methods in a reason-
able computation time. Within this group we find combinatorial optimization
problems, present in different scientific and industrial areas.

An optimization problem is defined in [11] by a couple (S, f), where S rep-
resents the set of possible solutions and f : S → R is the objetive function to
optimize. The objective function assigns to every solution s ∈ S of the search
space a real number indicating its worth. Hence, the main goal in solving an
optimization problem is to find a solution s∗ ∈ S, called global optimum, which

? This work has been supported by UTN under projects PICT2010/12 and UTN1585,
and by ANPCyT under project PRH PICT-2008-00242.

HPCLatAm 2013, pp. 25-36 (full paper)
Session: Evolutionary Computation & Scheduling

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013



has the best objective function value of all solutions of the search space. How-
ever, complete methods might need exponential computation time to explore
the search space in the worst case. Thus, the use of approximated optimiza-
tion techniques that provide good solutions to complex problems computed in a
reasonable time has gained popularity.

In general, metaheuristics family is divided into two categories: single solution
based metaheuristics (also known as trajectory metaheuristics, or S-metaheuris-
tics) and population based metaheuristics (P-metaheuristics). Each metaheuris-
tic in the first class starts with a single solution that is perturbed to explore
the search space of the problem addressed. Metaheuristics in the latter class is
characterized by working with a set of solutions, called population, represented
by individuals who interact with each other to carry out the search process.
Well-known single solution methods are Local Search, Simulated Annealing and
Tabu Search. Within population metaheuristics we found the Evolutionary Al-
gorithms like Genetic Algorithms or Differential Evolution; and some inspired
from the collective behavior of species such as Ant Colonies, among others [11].

Originally, metaheuristics were developed following a sequential processing
scheme. Later, and consequently to technological advances in the area of hard-
ware and the increasing demand for computing power, several alternatives were
proposed in order to maximize the use of resources, without jeopardising the
quality of the solutions or even enhancing the solutions obtained by the sequen-
tial method.

In this paper we focus on Differential Evolution (DE) as a population meta-
heuristic applicable to provide solutions for optimization problems, and widely
used over several benchmark functions and real-world problems [15]. We present
two different alternatives for parallelizing DE, its main characteristics, advan-
tages and drawbacks of using each one. Also, we describe the experiments carried
out in order to test the performance of both versions, with regard to solutions
quality versus computing time. Existing works related to the theme, used small
test cases compared to real combinatorial optimization problems. In our tests,
we considered large enough cases to deal with such problems.

The paper is organized as follows: section 2 describes this particular meta-
heuristic, including its main characteristics and a description of its processing
model. Section 3 shows the advantages of using parallel computing when the
problem is addressed by population-based metaheuristics, in order to obtain
better quality results and/or to reduce the computation time. Two paralleliza-
tion versions for DE are also included in this section. Section 4 describes the
experiments carried out. Finally, we present the conclusions.

2 Differential Evolution

The Differential Evolution (DE) algorithm was proposed by Price, Storn and
Lampinen in 1995 [10]. It is a population based optimizer or metaheuristic that
starts generating a population of D-dimensional vectors whose initial values are

HPCLatAm 2013 - Page 26



randomly obtained based on the limits defined by the inputs of the algorithm.
The total of individuals in the population is a known constant value.

Each individual belongs to a generation g, i.e., let Xi,g = (x1
i,g, ..., x

D
i,g) an

individual of the population, with i = 1, ...,N where the index i denotes i-th pop-
ulation individual, g determines the generation to which the individual belongs
and N is the total number of individuals in the population.

The main idea of the method is to use vector difference in order to modify the
population vector. This idea has been integrated into a recombination operator
of two or more solutions, consisting of two phases (mutation and crossover), with
the aim of guiding the search towards “good” solutions.

In the following, we explain the three classical main operators of DE. In
section 3 we also introduce the migration operator, which is typically used in
parallel versions of metaheuristics.

Mutation: After initialization, DE mutates and recombines the current pop-
ulation to produce another one constituted by N individuals. The mutation pro-
cess begins in each generation selecting random individuals Xr1,g, Xr2,g. The i-th
individual is perturbed using the strategy of the formula (1), where the indexes
i, r1 and r2 are integers numbers different from each other, randomly generated
in the range [1, N].

“DE/best/1” : Vi,g+1 = Xbest,g + (Xr1,g–Xr2,g)F (1)

The constant F represents a scaling factor and controls the difference am-
plification between individuals r1 and r2, and it is used to avoid stagnation in
the search process. Xbest,g is the best individual, i.e., it has the best value of
the objective function evaluation among all individuals of current generation g.
The notation “DE/best/1” represents that the base vector chosen is the best
individual, and “1” vector difference is added to it.

The formula (1) is the most general of the mutation strategies. Additionally,
the original DE version proposes five alternative strategies [10].

Crossover : After the mutation phase, each perturbed individual Vi,g+1 =
(v1i,g+1, ..., v

D
i,g+1) and the individual Xi,g = (x1

i,g, ..., x
D
i,g) are involved in the

crossover operation, generating a new vector Ui,g+1 = (u1
i,g+1, ..., u

D
i,g+1), de-

nominated “trial vector”, and obtained using the expression (2).

U j
i,g+1 =

{
vji,g+1 if randj ≤ Cr or j = k

xj
i,g in other case

(2)

where j = 1, ..., D, and k ∈ {1, ..., D}. The constant Cr ∈ [0, 1], denominated
crossover factor, is a parameter of the algorithm defined by the user. Cr is
used to control the values fraction that are copied from the mutant vector V .
randj is the output of a uniformly distributed random number generator, and
is generated in each comparison made on the vector components. The value k is
a randomly generated index chosen for each individual. The vector component
for that index is taken from the mutated vector to ensure that the trial vector
is not exactly equal to its source vector Xi,g.

HPCLatAm 2013 - Page 27



There are two crossing operators that can be applied: binomial or exponen-
tial. Both types use the expression (2), but differ in the way it is applied. The
binomial crossover operator copies the jth parameter value from the mutant vec-
tor Vi,g+1 to the corresponding element in the trial vector Ui,g+1 if randj ≤ Cr
or j = k. Otherwise, it is copied from the corresponding target (or parent) vector
Xi,g. Instead, the exponential crossover operator inherits the parameters of trial
vector Ui,g+1 from the corresponding mutant vector Vi,g starting from a ran-
domly chosen parameter index. Then, it continues copying the parameter values
form the mutant vector Vi,g till the jth parameter value satisfying randj > Cr.
The remaining parameters of the trial vector Ui,g+1 are copied from the cor-
responding target vector Xi,g. To complete the notation, when the crossover
applied is binomial the method is named “DE/best/1/bin”. If a exponential
crossover is used, it is referred as “DE/best/1/exp”.

Selection: This phase determines which element will be part of the next
generation. The objective function of each trial vector Ui,g+1 is evaluated and
compared with the objective function value for its counterpart Xi,g in the current
population. If the trial vector has less or equal objective function target value
(for minimization problems) it will replace the vector Xi,g in the next generation
population. The scheme followed is presented in the expression (3).

Xi,g+1 =

{
Ui,g+1 if f(Ui,g+1) ≤ f(Xi,g)
Xi,g in other case

(3)

The three stages mentioned above are repeated from generation to genera-
tion until the specified termination criterion is satisfied. This criterion could be
finding a predefined minimal error or reaching a certain number of iterations.

Due to the potentialities of DE for solving optimization problems, in recent
years, numerous variations and methods have been proposed with the aim of im-
proving the performance of the classic technique. Among them are those trying
to adapt DE parameters such as self-adjusting [16], [3]; others using different
mechanisms to optimize the individuals selection for the mutation and selec-
tion phases [4], and some combining both methods [17]. In several studies DE
have been used in combination with other metaheuristics, obtaining hybrid ap-
proaches [2], [9], [12], in order to improve the solutions quality, or to accelerate
the speed of convergence. In addition, there are several studies that incorporate
parallelism in order to improve the quality of the solutions obtained and/or di-
minish the execution time of this metaheuristic. The following section describes
some of them and presents two parallel models used in this study.

3 Parallel Differential Evolution proposals

By their nature, most metaheuristics are prone to parallelism, since most varia-
tion operations can be undertaken in parallel [1]. But beyond the natural possi-
bilities for parallelization, the difficulty lies in opting for parallel versions that,
empowering the spirit of the metaheuristic, does not radically change the original
method, nor be penalized by the portions of code that are not parallelizable.

HPCLatAm 2013 - Page 28



There are different approaches to parallelize population-based metaheuristics,
and consequently DE, depending on the purpose to be achieved. On the one
hand, it is desirable to improve the fitness value of the solution found with the
sequential version. On the other hand, the execution time may be reduced, trying
not to affect the quality of the solutions. The ideal case would be achieving both
goals at the same time.

Even though there are several classifications of parallel metaheuristics mod-
els [11, 10], in general they constitute different sorts of combinations for the
Master/Worker model [6] (with focus on the decomposition, mapping and as-
signment between tasks, data and processors) and a migration operator. Usually,
each worker is located into a separate computing node, and depending on the
model, some authors named the worker units as islands. The migration con-
stitutes a very important operator when there are various populations or when
the population is subdivided between different processing nodes. This operator
allows for the information interchange among worker processes. Migration is ap-
plied at a certain rate, and involves each local population in the selection of a
set of individuals to emigrate, and a set of individuals to be replaced. The main
objective of moving individuals along the communication topology, is to peri-
odically introduce new members (information) in each population. Under the
assumption that each worker is evolving to approximate the solution, the ex-
changed individuals may spread good characteristics locally found, opening new
searching spaces. However, the migration rate can have a positive or negative
influence on the quality of the solutions obtained, (it affects the heterogeneity of
the population), or on the computing time (due to the communication overhead).

In recent years there have been developed different algorithmic versions to
parallelize DE. They are framed within shared or distributed memory models.
Among the first, we encounter those who follows a threaded implementation [8]
in order to reduce the computing time, but obtaining similar quality results.
Among the latter, most designs follows the standard model with migration [10],
in which a master process creates a population, subdivides it and assigns the
subpopulations to the worker processes, who are in charge of applying the evo-
lutionary process at local subpopulation level and also applying migration at a
certain rate. In [18] is presented a proposal for solving the Pareto front problem.
An individual in the population can be migrated with a certain probability to a
random position in a random subpopulation. In [13], the standard model uses a
ring interconnection topology and random migration rate controlled by a param-
eter of the algorithm. The functions used for the tests are similar to those used
in our experiments, but with much more limited dimensions and less generations
than the ones used here. The aim of that work is to study the implications of a
controlled migration constant. In [5], a parallel DE version is proposed and ap-
plied to solve biological systems. It also follows a ring interconnection topology,
where the replacement strategy in the migration phase is to substitute the oldest
member in the target subpopulation (one who has been longer in that population
without being replaced) by the best individual in the source subpopulation. The
population size is smaller than those used in this work, and there are employed

HPCLatAm 2013 - Page 29



only four processing nodes. The analysis was done with different migration rates
and they conclude by identifying the best of them.

The last three approaches mentioned are based on the standard model (sim-
ilar to the model presented in section 3.1). A critical issue of it, is the consid-
eration of the population size. The ability of the algorithm to find a solution
depends on the tasks size and is related to the amount of individuals per node,
making significant local and global evolution. Moreover, in occasions combi-
natorial optimization problems have an important number of variables, and in
consequence the search space is too big. Then, it is relevant to develop techniques
that encompass these scenarios. For all these reasons arises the need to perform
a comparative study to test with large enough cases, and to present different al-
ternatives that take into account scalability measures. Next subsections describe
two parallel versions for DE. One follows what we call the subpopulation-based
model, with ring interconnection topology and a semi-elitist replacement. The
other, consist of an island model, having the entire population in each island,
and a separate master process coordinating the system.

3.1 First algorithm: Subpopulation-based Model

The first model described is an “Standard Model with migration” version [10]. It
follows a master-worker scheme. The figure 1 describes this model. The master
process initializes and divides the population (Pop. in the figure 1) into as many
subpopulations (sp 1,..., sp n) as workers in the system, and sends one sub-
population per worker. Each worker receives its subpopulation, and starts with
the evolutionary actions like a classic DE. The boxes in figure 1 named “SDE”
represent worker processes, running a Subpopulation-based DE. The boxes with
doted lines represent the processing node in which the worker is located.

Fig. 1: Subpopulation-based model: Population distribution between workers.

Every certain number of generations, and considering a certain topology,
begins a migration phase. The amount of individuals that migrate is a certain
percentage of the whole population, and this value is calculated from the total of
individuals involved in the process, i.e. from the initial population size; the result-
ing number is proportionally divided among the workers. In each node, the set of

HPCLatAm 2013 - Page 30



emigrant individuals is constituted by the best individual in the subpopulation
(i.e. the one who has the best fitness value) and the rest is completed by means
of a random selection. While selected individuals are migrating, the worker orga-
nizes its subpopulation to determine which will be the candidates to be replaced
by the newly received ones. The replacement would be completely elitist, if the
worst individuals were substituted by the bests of the source subpopulation. In
our proposal, the set of emigrants is composed by some individuals randomly
selected and the best member, thus balancing the diversity of the population.

With this scheme, the master process remains idle while workers perform
the evolutionary stages, and will have no further intervention until the merge of
the results. To avoid idle computing time, in our proposal the master process
becomes another worker, and it applies DE with its corresponding portion of the
initial population, like any of the other workers. As can be seen in figure 1, the
master process shares the same processing node with a worker process, so as to
maximize the use of the resources.

Once the workers finish their generational evolutionary process, they com-
municate with the master in order to send the individuals of the last obtained
generation. The master evaluates them, and stores the best individual found from
all the subpopulations, then the process ends. In our proposal, the finalization
condition consists in reaching a certain number of generations.

3.2 Second algorithm: Island Model

The second model described is framed within the classification “Algorithmic
Level with cooperation” [11]. The figure 2 represents this model, whose process-
ing scheme is described in the following. Multiple instances of DE are executed in
parallel on different compute nodes, each one considering a different population
of individuals (Pop. 1, ..., Pop. n), and a different random initial seed. We call
each computing node “an island”. A master process is in charge of monitoring
the system as a whole, and each worker process is dedicated to compute all the
generations in that island. As can be seen, the master process is located in an
exclusive computing node, so as to coordinate the system and to avoid delaying
the response to the workers.

Every certain migration rate, the worker communicates with a neighbor to
send some individuals. The amount of individuals that migrate, in the same
manner as was detailed before, is a certain percentage of the population. This
percentage is a global value, calculated from the number of individuals in the
island. Like the subpopulation model, the individuals to be migrated are the best
member of the island plus other individuals randomly selected, and the received
individuals will replace the worst individuals of the target population.

After a migration phase and replacement process, the workers inform to
the master which is the best individual found so far. The master receives this
information and temporarily stores the best individual of all those who have
been sent by the workers. Then, if the termination condition is met, the master
sends a message to workers indicating the end of the process. Otherwise, the
master informs to continue with their evolutionary process. In our proposal, the

HPCLatAm 2013 - Page 31



Fig. 2: Island Model: independent or cooperating self-contained metaheuristics.

termination condition was established, like in the previous mentioned model, to
reach a certain number of generations.

This model has greater computational cost than the subpopulation based
model, since the number of individuals of each island does not vary as the amount
of workers increases. However, the island model can achieve an increment in the
variability of the population when the number of individuals in each island is a
considerable number. This can significantly promote the exploration of a larger
search space, which may lead to better solutions quality.

4 Test cases and results analysis

The performance for the algorithms was tested with a set of scalable functions,
obtained from [14]. For each of them, 30 executions were carried out with dif-
ferent seeds. The sizes of the problems considered were 100, 500 and 1000 with
a population made up with 100 and 400 individuals. The function used for the
test where Shifted Sphere (unimodal, search range in [-100,100] and a bias value
of -450), and Shifted Rosenbrock (multimodal, search range in [-100,100] and a
bias value of 390). The method used for DE is DE/best/1/bin. Some tests were
performed with different values for F (scaling factor) and Cr (crossover factor),
using functions with similar features to those used in this work. This lead to the
determination of F = 0.5 and Cr = 0.3 as the values for that constant factors,
this values where the same for all islands.

In both models, the exchange rate is a parameter of the algorithm. Several
experiments were performed so as to establish the appropriate value for this
parameter. As a consequence, in all the tests the individuals were exchanged
among the islands or workers at a migration rate of 15% every 500 iterations.
The value considered for the maximum number of generation was 6000 iterations.

The intercommunication topology used in both models is a ring topology,
so that each worker or island receives individuals from its predecessor in the
topological order, and sends their own individuals to its successor in that order.

HPCLatAm 2013 - Page 32



The average error is defined as the difference between the current value of
the global optimum and the value obtained by the algorithm. If the error is
zero indicates that it has been found the global optimum. For the problems
considered, the best results are those that are closer to zero error.

The graphs of the figures 3, 4 and 5 show the mean errors obtained in the
different experiments performed with the two proposals. On the one hand, the
results were computed for the model of subpopulations with a total of 400 indi-
viduals. This size was considered such that, after the distribution of the popu-
lation, workers have a significant number of individuals to do their job. On the
other hand, the results for the island model with 100 and 400 individuals were
obtained. The comparative analysis of these last two tests can give us a pattern
of the influence of population size with respect to solution quality and runtime.
As hypothesis, we know that the larger the population for the island model, the
greater the computing time. However, this diversity can lead to better quality
solutions.

Fig. 3: Mean error of Shifted Sphere and Shifted Rosenbrock functions. Dimension 100.

Fig. 4: Mean error of Shifted Sphere and Shifted Rosenbrock functions. Dimension 500.

In the graphs, each color represents one of the experiments mentioned above.
In order to contrast with the parallel experiments, the graphs also include two
columns that represents the mean error for the sequential version, with popula-
tion sizes of 100 and 400 individuals. Some bar columns of the graphics have a
colored arrow at top, representing that the column bar has a bigger magnitude

HPCLatAm 2013 - Page 33



that the maximum scale in the graphic. Moreover, we include some small labeled
black arrows with two possible purposes: they may explicitly indicate the value
of those big columns or they may highlight some interesting value.

Fig. 5: Mean error of Shifted Sphere and Shifted Rosenbrock functions. Dimension 1000.

In order to test scalability, all experiments included 2, 4, 8, 16 and 32 proces-
sors dedicated to the workers processes, and a separate processor for the master
process for the island model. All tests were made on a cluster with 36 CPUs
distributed between 9 nodes. They have 64 bits with Intel Q9550 Quad Core
2.83GHz processors and RAM memory of 4GB DDR3 1333Mz. All the nodes
are connected together by Ethernet segments and switch Linksys SLM2048 of
1Gb. Base software on the cluster includes a 64 bits Debian 5 Lenny Operating
System. In the codification we use the MPICH library [7] for message passing
communication between participating nodes.

Table 1 shows the average computing time, discriminating the tests according
to the dimension and model analyzed. The results show that the island model
with 400 individuals gives better results in terms of quality of the solution, in
most cases. In those instances in which the results are better using the subpop-
ulation based model, the differences with the island version are not significant.
Moreover, in almost all test made with the subpopulation based model, the qual-
ity of the results gets worse as the number of workers increase. Although with
this model the scalability in terms of computation time is achieved, the quality
of the solutions is not optimal, considering the results obtained with the other
model. But in certain cases, it may be desired the reduction of computational
time, relegating a certain percentage of the solutions quality. For example (see
table 1), the computation time for Shifted Rosenbrock function, dimension 1000
with island model, eight workers and 400 individuals is 186.64 seconds, and the
error is in the order of E+03. With the subpopulation based model, having the
same quantity of workers and individuals, the computing time for the function
was 18.22 sec. with an error of E+04. Here we see that time is reduced about
nine times compared with the island parallel model, and the obtained solution
may be considered of similar quality.

Then, the subpopulation based model, compared with the island model, may
be useful when what is sought is to reduce the computing time, penalizing in
certain orders of magnitude the quality of the solutions.

HPCLatAm 2013 - Page 34



Table 1: Average computing time (in seconds), obtained with the algorithms.

Shifted Sphere Shifted Rosenbrock

Par. model 2 4 8 16 32 Par. model 2 4 8 16 32

Dim 100. Sequential time: Dim 100. Sequential time:
100 ind=2.08; 400 ind=10.91 100 ind=2.54; 400 ind=12.82

Subp. 400 5,32 3,06 1,69 2,81 4,01 Subp. 400 6,29 3,48 1,95 2,93 4,13
Island 100 2,68 2,71 2,83 2,91 4,27 Island 100 3,17 3,21 3,28 3,45 5,05
Island 400 10,73 10,95 11,33 11,71 16,05 Island 400 12,71 13,00 13,36 13,77 19,03

Dim 500 Sequential time: Dim 500 Sequential time:
100 ind=11.06; 400 ind=53.26 100 ind=13.65; 400 ind=63.24

Subp. 400 26,82 13,94 7,33 5,42 3,19 Subp. 400 31,09 16,08 8,69 5,62 3,61
Island 100 12,98 13,23 13,60 14,66 19,30 Island 100 15,40 15,72 16,37 17,36 23,13
Island 400 54,92 69,95 72,32 78,04 84,74 Island 400 64,39 82,11 84,42 91,83 109,12

Dim 1000 Sequential time: Dim 1000 Sequential time:
100 ind=22.57; 400 ind=110.14 100 ind=27.80; 400 ind=128.64

Subp. 400 67,72 33,47 15,39 8,13 4,80 Subp. 400 87,25 38,14 18,22 8,53 5,49
Island 100 26,03 26,85 28,18 29,37 40,10 Island 100 30,78 32,10 32,93 34,88 46,42
Island 400 113,26 161,99 156,51 169,72 181,27 Island 400 132,89 181,16 186,64 200,62 207,92

However, the subpopulation based model, gives good quality results com-
pared with the sequential version, and at lower computing time costs. Then, if
we contrast this proposal versus the sequential algorithm, having few computa-
tional resources, we achieve a significant reduction in execution time. Although
the solutions are not the best that can be achieved, for certain applications they
may be considered of good quality. Also, we can notice that the hypothesis of
population heterogeneity associated to solutions quality was corroborated. The
experiments carried out over the island model with 400 individuals gives better
results than those made with 100 individuals. Then, the island model is suitable
in those cases when what is desired is an improvement in the results quality.

5 Conclusions

In this paper we describe two different models to parallelize the classical Differen-
tial Evolution metaheuristic. Through the results analysis it was found that the
subpopulation model reduces significantly the computing time, but the quality
of the solutions is not the optimal that can be achieved. With the island model,
the computing time is not reduced, because of the model characteristics, but
the solutions quality is improved significantly with the increment of the number
of workers involved in the process. This feature reflects the fact that the model
explores a greater search space, since each island is configured with a different
initial seed. The tendency indicates that better quality solutions would be ob-
tained as the number of workers increases. As future works we plan to employ
these parallelization models to replace the sequential DE scheme in a hybrid
metaheuristic that combines DE with Local Search, presented on an early work
[12].

HPCLatAm 2013 - Page 35



References

1. Alba, E., Tomassini M.: Parallelism and Evolutionary Algorithms. In: Proc. of the
IEEE Trans. on Evol. Comp., vol. 6, num. 5, pp. 443-462 (2002)

2. Ali, M., Pant, M., Nagar, A.: Two local Search Strategies for Differential Evolution.
In: 5th IEEE Inter. Conf. on Bio-Inspired Computing: Theories and Appl., vol. 2,
pp 1429-1435 (2010)

3. Brest, J., Zamuda, A., Bokovie, B., Maucec M., Zumer, V.: High-Dimensional Real-
Parameter Optimization using Self-Adaptive Differential Evolution Algorithm with
Population Size Reduction. In: Proc. of the IEEE Congr. on Evol. Comp., pp 2032-
2039 (2008)

4. Mart́ınez, C., Rodriguez, F., Lozano, M.: Role differentiation and malleable mating
for differential evolution: an analysis on large-scale optimisation. In: Soft Comput-
ing, vol. 15, issue 11, pp. 2109-2126 (2011)

5. Kozlov, K., Samsonov A.: New Migration Scheme for Parallel Differential Evolution.
In: Proc. Int. Conf. on Bioinf. of Genome Reg. and Structure, pp 141-144 (2006)

6. Mattson T., Sanders B., Massingill B.: Patterns for Parallel Programming. Addison-
Wesley, chapter 5, pp 143-152 (2004)

7. MPICH Message Passing Interface, http://www.mpich.org/
8. Nebro A., Durillo J.: A Study of the Parallelization of the Multi-Objective Meta-

heuristic MOEA/D. In: Proc. of the 4th Int. Conf. on Learning and Intelligent
Optimization, vol. 6073, pp. 303-317 (2010).

9. Noman, N., Iba, H.: Accelerating Differential Evolution Using an Adaptive Local
Search. In: Proc. of the IEEE Trans. on Evol. Comp., vol. 12, pp 107-125 (2008)

10. Price, K., Stron R., Lampinen J.: Differential Evolution: A Practical Approach to
Global Optimization. Springer. New York (2005)

11. Talbi, E.: Metaheuristics: From Design to Implementation. John Wiley & Sons,
Hoboken, New Jersey (2009)

12. Tardivo, L., Cagnina, L., Leguizamón, G.: A Hybrid Metaheuristic Based on Differ-
ential Evolution and Local Search with Quadratic Interpolation. In: XVIII Congreso
Argentino de Ciencias de la Computación (2012)

13. Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Parallel Differential Evo-
lution. In: Proc. of the Congr. Evol. Comp., vol. 2, pp. 2023-2029 (2004)

14. Tang, K., Yao, X., Suganthan, P. N., MacNish, C., Chen, Y. P., Chen, C. M.,
Yang, Z.: Benchmark Functions for the CEC’2008 Special Session and Competi-
tion on Large Scale Global Optimization. Technical Report. In: Nature Inspired
Computation and Applications Laboratory. USTC. China. pp. 4-31 (2007)

15. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, parti-
cle swarm optimization, and evolutionary algorithms on numerical benchmark prob-
lems. In: Proc. of IEEE Congr. on Evol. Comp., pp. 1980-1987 (2004)

16. Yang, Z., Tang, K., Yao, X.: Self-adaptive Differential Evolution with Neighbor-
hood Search. In: Proc. of the IEEE Congr. on Evol. Comp., pp. 1110-1116 (2008)

17. Yang, Z., Tang, K., Yao, X.: Scalability of generalized adaptive differential evolu-
tion for large-scale continuous optimization. In: Soft Computing, vol. 15, issue 11,
pp. 2141-2155 (2011)

18. Zaharie, D., Petcu, D.: Adaptive Pareto Differential Evolution and Its Paralleliza-
tion. In: Proc. of the 5th Int. Conf. Parallel Processing and Applied Mathematics,
vol. 3019, pp. 261-268 (2004)

HPCLatAm 2013 - Page 36


