
Optimising Small-World Properties in VANETs
with a Parallel Multi-Objective Coevolutionary

Algorithm

Grégoire Danoy1, Julien Schleich1, Bernabé Dorronsoro2, and Pascal Bouvry1

1 Computer Science and Communications Research Unit
University of Luxembourg

{gregoire.danoy, julien.schleich, pascal.bouvry}@uni.lu,
2 Laboratoire d’Informatique Fondamentale de Lille

University of Lille 1
bernabe.dorronsoro diaz@inria.fr

Abstract. Cooperative coevolutionary evolutionary algorithms differ
from standard evolutionary algorithms architecture in that the popu-
lation is split into subpopulations, each of them optimising only a sub-
vector of the global solution vector. All subpopulations cooperate by
broadcasting their local partial solutions such that each subpopulation
can evaluate complete solutions. Cooperative coevolution has recently
been used in evolutionary multi-objective optimisation, but few works
have exploited its parallelisation capabilities or tackled real-world prob-
lems. This article proposes to apply for the first time a state-of-the-
art parallel asynchronous cooperative coevolutionary variant of the non-
dominated sorting genetic algorithm II (NSGA-II), named CCNSGA-II,
on the injection network problem in vehicular ad hoc networks (VANETs).
This multi-objective optimisation problem, consists in finding the min-
imal set of nodes with backend connectivity, referred to as injection
points, to constitute a fully connected overlay that will optimise the
small-world properties of the resulting network. Recently, the well-known
NSGA-II algorithm was used to tackle this problem on realistic instances
in the city-centre of Luxembourg. In this work we compare the perfor-
mance of the CCNSGA-II to the original NSGA-II in terms of both
quality of the obtained Pareto front approximations and execution time
speedup.

1 Introduction

Real-world optimisation problems are typically hard and multi-objective by na-
ture, since different conflicting criteria have to be considered. This means that in
such problems improving one objective will imply decreasing (some of) the oth-
ers. Contrary to single-objective optimisation which aims to a unique solution,
multi-objective optimisation consists in finding a set of so-called non-dominated
solutions in the objective space, referred to as Pareto-front. A solution is said to
dominate another one if it is better on one objective and similar or better on the

HPCLatAm 2013, pp. 13-24 (full paper)
Session: Evolutionary Computation & Scheduling

C. Garcia Garino and M. Printista (Eds.)
Mendoza, Argentina, July 29-30, 2013

other objectives. A multi-objective algorithm then aims to find a limited set of
non-dominated solutions as close as possible to the optimal Pareto-front, both
in terms of diversity and convergence.

Since many years, Evolutionary algorithms (EAs) have proven to be an ef-
ficient approach for multi-objective optimisation [1]. However standard multi-
objective EAs have shown some limits when dealing with large and complex
problems, which motivated research in faster and more accurate methods. One
promising approach is cooperative coevolution as introduced originally by Potter
for single-objective optimisation [12], in which the solution vector is decomposed
and each subset of solution is evolved in a separated subpopulation. These co-
operate by exchanging their local representative(s) in order to create a complete
solution to be evaluated on the global problem.

Some recent works have demonstrated the advantages of cooperative coevo-
lution in the multi-objective context [5, 14], most of them focused on improving
the solutions quality. As originally stated by Potter, cooperative coevolution
has some good potential for parallelism, but only few works have studied this
capability. Most lately, Nielsen et al. proposed a new parallel asynchronous co-
operative coevolutionary non-dominated sorting genetic algorithm II (NSGA-II)
[10] that demonstrated promising speedup capabilities but limited their study
to well-known multi-objective benchmark functions.

In this work we thus propose to apply for the first time this state-of-the-
art algorithm on a real-world problem, i.e., the injection network problem in
vehicular ad hoc networks (VANETs). This topology control problem consists
in finding the minimum set of vehicles, called injections points, chosen to pro-
vide backend connectivity and compose a fully-connected overlay network such
that small-world properties of the resulting network are optimised. Experiments
are conducted on realistic VANET networks snapshots from Luxembourg city,
generated with the VehILux mobility model [11].

The remainder of this article is organised as follows. The next section presents
a brief state-of-the-art on cooperative coevolutionary multi-objective EAs. Then
the NSGA-II algorithm and its asynchronous cooperative coevolutionary variant
(CCNSGA-II) are presented in detail in section 3. The injection network problem
is described in section 4. Section 5 then provides the experimental setup and
results analysis in terms of execution time speedup and solution quality. Finally
our conclusions and perspectives and given in section 6.

2 Related Work

Cooperative coevolutionary evolutionary algorithms (CCEAs) mainly differ from
standard EAs by their fitness evaluation that requires interactions individu-
als from other so-called subpopulations. In the original cooperative coevolution
framework proposed by Potter et al. in [12], the decision vector is split such that
each decision variable is evolved in different subpopulations. In order to evaluate
their partial solutions, each subpopulation exchanges periodically some represen-
tative (e.g. best) with all other subpopulations. This coevolutionary framework

HPCLatAm 2013 - Page 14

was initially proposed for single-objective optimisation but more recently several
multi-objective versions proved to be efficient [1]. The following proposes a brief
survey of cooperative coevolutionary MOEAs, a more comprehensive one can be
found in [4].

The first CCMOEA was proposed in [8] as an extension of the Genetic Sym-
biosis Algorithm (GSA) for multi-objective optimisation problems. The multi-
objective GSA (MOGSA) differs from the standard GSA with a second sym-
biotic parameters, which represents the interactions of the objective functions.
One main drawback of this algorithm is that it requires knowledge of the search
space, which highly reduces its application possibilities.

Then, Keerativuttitumrong et al. proposed the Multiobjective Co-operative
Co-evolutionary Genetic Algorithm (MOCCGA) in [6]. It combines Fonseca and
Flemings multi-objective GA (MOGA) and Potter’s Co-operative Co-evolutionary
Genetic Algorithm (CCGA). Each subpopulation evolves using MOGA and as-
signs a fitness to its individuals based on their rank in the subpopulation local
Pareto front. However this local Pareto optimality perception is a limiting fac-
tor for the performance of MOCCGA. A parallel implementation of MOCCGA
was empirically validated using 1, 2, 4 and 8 cores, but limited to well-known
benchmark functions (ZDT [16]).

MOCCGA was extended in [7], with other MOEAs and a fixed size archive
that stores the non-dominated solutions. Another variant was introduced by
Tan et al. [14] proposed, in addition to adding an archive, a novel adaptive
niching mechanism. A parallel version was also experimented but still limited to
the ZDT benchmark. Finally, [5] presented a non-dominated sorting cooperative
coevolutionary algorithm (NSCCGA), which is essentially the coevolutionary
extension of NSGA-II.

Most lately, Dorronsoro et al. proposed a parallel synchronous CCMOEA
framework with three different MOEAs [4]: NSGA-II, Strength Pareto Evo-
lutionary Algorithm (SPEA2) [17] and Multi-objective Cellular Genetic Algo-
rithm (MOCell) [9]. They demonstrated that super-linear speedup is possible on
a scheduling problem, compared to the original MOEAs. Finally, a new variant
with asynchronous communications between the subpopulations was proposed in
[10] which further improved the speedup without degrading the solutions quality
on standard benchmarks (i.e., DTLZ [3] and ZDT).

This article proposes to apply for the first time this parallel asynchronous
CCMOEA with NSGA-II on a real-world problem, i.e., the optimisation of small-
world properties in VANETs.

3 Algorithms

The following subsections present the two multi-objective algorithms consid-
ered in this work, the well-known Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and its cooperative coevolutionary variant CCNSGA-II.

HPCLatAm 2013 - Page 15

3.1 Non-dominated Sorting Genetic Algorithm (NSGA-II)

The NSGA-II [2] algorithm is the reference algorithm in multi-objective opti-
misation. A pseudocode is given in Algorithm 1. NSGA-II does not implement
an external archive of non-dominated solutions, but the population itself keeps
the best non-dominated solutions found so far. The algorithm starts by gen-
erating an initial random population and evaluating it (lines 2 and 3). Then,
it enters in the main loop to evolve the population. It starts by generating a
second population of the same size as the main one. It is built by iteratively
selecting two parents (line 6) by binary tournament based on dominance and
crowding distance (in the case the two selected solutions are non-dominated),
recombining them (two-point crossover in our case) to generate two new solu-
tions (line 7), which are mutated in line 8 (here bit flip mutation) and added to
the offspring population (line 9). The number of times this cycle (lines 5 to 10)
is repeated is the population size divided by two, thus generating the new popu-
lation with the same size as the main one. This new population is then evaluated
(line 11), and merged with the main population (line 12). Now, the algorithm
must discard half of the solutions from the merged population to generate the
population for the next generation. This is done by selecting the best solutions
according to ranking and crowding, in that order. Concretely, ranking consists
on ordering solutions according to the dominance level into different fronts (line
13). The first front is composed by the non-dominated solutions in the merged
population. Then, these solutions in the first front are removed from the merged
population, and the non-dominated ones of the remaining solutions compose the
second front. The algorithm iterates like this until all solutions are classified.
To build the new population for the next generation, the algorithm adds those
solutions in the first fronts until the population is full or adding a front would
suppose exceeding the population size (line 14). In the latter case (lines 15 to
17), the best solutions from the latter front according to crowding distance (i.e.,
those solutions that are more isolated in the front) are selected to complete the
population. The process is repeated until the termination condition is met (lines
4 to 18).

1: //Algorithm parameters in ‘nsga’
2: InitialisePopulation(nsga.pop);
3: EvaluatePopulation(nsga.pop);
4: while ! StopCondition() do
5: for index ← 1 to cga.popSize/2 do
6: parents←SelectParents(nsga.pop);
7: children←Crossover(nsga.Pc,parents);
8: children←Mutate(nsga.Pm,children);
9: offspringPop←Add(children);
10: end for
11: EvaluatePopulation(offspringPop);
12: union←Merge(nsga.pop, offspringPop);
13: fronts←SortFronts(union);
14: (Pop’, lastFront)←GetBestCompleteFronts(fronts);
15: if size(nextPop) < nsga.popsize then
16: Pop’←BestAccToCrowding(lastFront,nsga.popsize-size(Pop’));
17: end if
18: end while

Algorithm 1: Pseudocode for NSGA-II

HPCLatAm 2013 - Page 16

3.2 Asynchronous Cooperative Coevolutionary NSGA-II

As previously mentioned, cooperative coevolution splits the solution vector and
evolves each subset of the solution using a genetic algorithm, in our case NSGA-
II, in so-called subpopulations. In the single-objective case, each subpopulation
then broadcasts its representatives to all the other subpopulations after each
generations following a selection scheme (e.g., best individual). This fully con-
nected broadcast of representatives enables each subpopulation to assemble and
evaluate the resulting global objective function which is essential for the local
genetic algorithm.

To apply the coevolutionary paradigm in the multi-objective context, several
changes to the single-objective framework must be operated. The CCNSGA-II is
based on the asynchronous cooperative coevolutionary framework which pseudo-
code is given in Algorithm 2 and described in the following. A first difference
is the merge of the local Pareto-front from each sub-population to generate an
archive of best combined Pareto-fronts, as can be seen in line 16. This merging
process of the solutions sets is done by choosing one of the sets and adding to
it all the other solutions. If the resulting approximation set exceeds the archive
size, the crowding policy is used to remove solutions based on the distance to
surrounding individuals belonging to the same rank.

A second difference induced by the multi-objective design lies in the con-
struction of complete solutions for evaluation. As previously mentioned, in the
single-objective case a partial solution from one subpopluation is evaluated by
composing a complete solution with the best partial solutions received from all
the other subpopulations. Whereas, in the multi-objective case, there will be
most of the time more than a single best solution, i.e., a set of non-dominated
solutions. In the CCNSGA-II, every subpopulation shares a number Ns of solu-
tions randomly chosen from the non-dominated ones found so far. An example of
how one sub-population, P1, shares four of its best solutions (i.e., Ns = 4) with
the other two populations is presented in Fig. 1. In case the local Pareto-front

1: t← 0
2: {` means parallel run}
3: ` i ∈ [1, I] :: setup(P 0 , i) {Initialise every subpopulation}
4: sync() {Synchronisation point}
5: {∀ means sequential run}
6: ∀ i ∈ [1, I] :: broadcast(P 0 , i) {Send random local partial solutions to all subpopulations}
7: ` i ∈ [1, I] :: evaluate(P 0 , i) {Evaluate solutions in every subpopulation}
8: sync()
9: ` i ∈ [1, I] :: {
10: while not stoppingCondition() do
11: generation(P t , i) {Perform one generation to evolve the population}
12: broadcast(P t , i) {Share best local partial solutions in every subpopulation}
13:
14: t ← t+ 1 {Increase generations counter}
15: end while
}

16: mergeParetoFronts() {Merge all subpopulations Pareto fronts into a single one}
Algorithm 2: Asynchronous CCNSGA-II framework

HPCLatAm 2013 - Page 17

Solution Construction Solution Construction

Solution Construction

R

A

N

D

R

A

N

D

Fig. 1. In the CCMOEA, every population (for example, P1) shares with the other
coevolving populations (P2 and P3) its four best partial solutions (bdv11 to bdv14).
The partial solutions are evaluated by building complete solutions with random partial
solutions of the other two subpopulations (bdv2X and bdv3Y)

contains less than Ns non-dominated solutions, randomly chosen individuals are
taken from the rest of the population to complete the set of Ns solutions.

In this asynchronous variant, contrary to the original synchronous model,
there is no synchronisation point before the broadcasting of the solutions (i.e.,
synchronisation would be inserted in line 12). Subpopulations keep evolving in-
dependently even when the other subpopulations are still busy with the current
generation. This means that the subpopulations will not share the total num-
ber of available objective function evaluations equally between them. A fast
executing subpopulation might perform more evaluations and thus ’steal’ evalu-
ations from the slower subpopulations. Even if all subpopulations do ’consume’
the same amount of total function evaluations, the asynchronous version should
remove delays and allow the algorithm to finish faster. Another possible conse-
quence of the asynchronicity is that a subpopulation may start evaluating its
individuals before the other subpopulations have transmitted their own individ-
uals, i.e., old individuals are used. However this effect was shown to have no
statistical significant impact on the results quality compared to the synchronous
model [10].

4 Problem Description

The injection network problem considered in this work was originally introduced
in [13]. Provided a snapshot of a VANET, the objective is to determine the
best set of vehicles to join the overlay network in order to unpartition the cor-

HPCLatAm 2013 - Page 18

responding network graph and maximise its small-world properties. In the first
subsection the injection network problem is defined together with the small-world
metrics used. The second subsection defines the corresponding multi-objective
optimisation problem.

4.1 Injection Networks

This problem considers hybrid VANETs where each vehicle can potentially have
both vehicle-to-vehicle and vehicle-to-infrastructure (e.g., using Wi-Fi hotspots)
communications. Nodes elected as injection points (i.e., nodes connected to the
infrastructure) form a fully connected overlay network, that aims at increas-
ing the connectivity and robustness of the VANET. Injection points respectively
permit to efficiently disseminate information from distant and potentially discon-
nected nodes and prevent costly bandwidth overuse with redundant information.
An example network is presented in Figure 2.

In this problem, we consider small-world properties as indicators for the good
set of rules to choose injection points. Small-World networks [15] are a class of
graphs that combines the advantages of both regular and random networks with
respectively a high clustering coefficient (CC) and a low average path length
(APL). The APL is defined as the average of the shortest path length between
any two nodes in a graph G = (V,E), that is APL = 1

n(n−1)

∑
i,j d(vi, vj) with

d(vi, vj) the shortest distance between nodes vi, vj ∈ V . It thus indicates the
degree of separation between the nodes in the graph. The local CC of node v

with kv neighbours is CCv = |E(Γv)|
kv(kv−1) where |E(Γv)| is the number of links

in the relational neighbourhood of v and kv(kv − 1) is the number of possible
links in the relational neighbourhood of v. The global clustering coefficient is the
average of all local CC in the network, denoted as CC = 1

n

∑
v CCv. The CC

measures to which extent strongly interconnected groups of nodes exist in the
network, i.e., groups with many edges connecting nodes belonging to the group,
but very few edges leading out of the group.

We here consider Watts original definition of the small world phenomenon
in networks with APL ≈ APLrandom and CC � CCrandom, where APLrandom
and CCrandom are, respectively, the APL and CC of random graphs with similar
number of nodes and average node degree k. In addition, the number of chosen
injection points has to be minimised as they may induce additional communica-
tion costs.

4.2 Optimisation Problem

The proposed optimization problem can be formalized as follows. The solution
to this problem is a binary vector s of size n (number of nodes in the network),
s[1..n] where s[i] = 1 if node vi is an injection point, and s[i] = 0 if vi is not an
injection point. The decision space is thus of size 2n.

HPCLatAm 2013 - Page 19

Injection point Overlay connection

Key

Network node V2V connection

Injection Point

Fig. 2. Network with 248 nodes including 6 injections points composing the overlay
network in Luxembourg city.

This problem is a three objectives one, defined as:

f(s) =

min {inj}
max {cc} ;
min {apldiff}

s. t. component = 1 (1)

where inj is the number of chosen injection points, cc is the average clustering
coefficient of the resulting network, and apldiff is the absolute difference between
the APL of the resulting network and the APL of the equivalent random graph:
apldiff = |apl − aplrandom|. For each overlay network instance evaluated in this
work, the aplrandom and ccrandom is obtained by averaging the APL and CC of
30 corresponding random graphs using Watts random rewiring procedure with
probability p = 1 [15]. Each random graph is created based on the number of
devices and average network degree. Since the initial objective is to unpartition
the network, a constraint is set on the number of connected components in the
created network, i.e., component must be equal to 1.

5 Experiments

This section first describes the methodology we followed for our experiments, i.e.,
the algorithms and problem instances parameters. In the second subsection the
obtained results considering both solutions quality and speedup are presented
and analysed.

HPCLatAm 2013 - Page 20

5.1 Experimental setup

The configuration of the NSGA-II algorithm used in the subpopulations is the
same as for the ‘standard’ NSGA-II, except the length of the decision vector.
Indeed, for the NSGA-II, the length is equal to the total number of nodes in the
problem instance, whereas for the CCNSGA-II it is divided by the number of
subpopulations.

The parameters of the algorithms are presented in Table 1. The configuration
of the NSGA-II is the one originally suggested by the authors [2]. However,
some parameters were adapted because a binary representation was used, in
which each gene (i.e., bit) represents one car. Genes set to 1 mean that the
corresponding cars act as injection points, while a 0 value indicates the contrary
The two-point crossover operator (DPX) with probability pc = 0.9 and the
bit-flip mutation operator with probability pm = 1/number of variables were
used. In two-point recombination, two crossover positions are selected uniformly
at random in both parents, and the values between these points are exchanged
to generate two new offspring solutions. The bit-flip mutation is to change a
1 into a 0, or vice-versa. The algorithm evolves until 50, 000 fitness function
evaluations are performed, and 30 independent runs were executed for every
problem instance.

The CCNSGA-II uses 4 subpopulations, each of them is run in a separate
thread running on a different core of the same multi-processor machine. The
population size for the NSGA-II is 100, and every subpopulation also has 100
individuals in the studied CCNSGA-II. Islands are exchanging 20 randomly cho-
sen local non-dominated solutions, and to evaluate a given solution, it is built
with random sub-solutions from those shared by the other subpopulations, as
proposed in [4].

For the problem instances, we have used snapshots from realistic VANET
scenarios in the city centre of Luxembourg, simulated using the VehILux mobility
model [11]. VehILux accurately reproduces the vehicular mobility in Luxembourg

Table 1. Algorithms configuration.

Numb. of subpop.∗ 4

Cores used 4 (1 for NSGA-II)

Number of threads 1 per subpopulation

Population size 100

Final archive size 100, from all subpops.

Migration policy ∗ 20 random

Max. evaluations 50, 000

Pop. initialisation Random

Selection Binary tournament

Recombination DPX

Probability 0.9

Mutation Bit Flip

Probability 1
number of variables

Independent runs 30
∗ Not applicable for NSGA-II

Table 2. Network instances

Surface 0.6 km2

Coverage radius 100 m

6
a
.m

. Network Number 21900 22200 22500

Number of Nodes 40 62 60

Partitions 10 8 6

Solution space size 112 4.6118 1.1518

7
a
.m

. Network Number 25500 25800 26099

Number of Nodes 223 248 301

Partitions 10 6 7

Solution space size 1.3467 4.5274 4.0790

HPCLatAm 2013 - Page 21

by exploiting both realistic road network topology (OpenStreetMaps) and real
traffic counting data from the Luxembourg Ministry of Transport. The 6 studied
networks represent snapshots of a simulated area of 0.6 km2, the first three small
snapshots are taken between 6:00 a.m. and 6:15 a.m. and the three large ones
between 7:00 a.m. and 7:15 a.m. The properties of the instances are shown in
Table 2.

5.2 Experimental results

This section presents the results obtained in our experiments. These were run
on the HPC facility of the University of Luxembourg. The nodes used are HP
Proliant BL2x220c G6 (10U) with 2 Intel L5640 CPUs having 6 cores each at
2.26 GHz.

The first part focuses on the analysis of the speedup obtained and the second
part analyses the solution quality using the following two well-known quality
measures to assess the quality (solutions diversity and convergence) of the found
solutions by the two algorithms: unary additive epsilon (I1

ε+) and spread (IS).

Speedup. The first objective of this work is to study the benefit of the parallel
asynchronous CCNSGA-II in terms of computational time speedup compared to
the standard NSGA-II. Figure 3 presents the average execution times in seconds
for the six problem instances and the corresponding speedup factor. The execu-
tion times increase drastically together with the problems instance sizes, from
121.18 seconds for the fastest with CCNSGA-II on the smallest instance (21900),
to more than 107 hours with NSGA-II on the largest instance (26099). This very
large computational time justifies the search for efficient parallel optimisation
approaches. The average speedup obtained is 4.55 with a low standard deviation
of 0.2. Indeed the obtained speedup is quite constant and always super-linear
(i.e., above 4), the worst one being obtained on the 22500 instance with 4.20
and the best one on the 25500 with 4.76, which confirms the promising results
obtained on test functions in [10] despite being slightly lower.

Solutions quality. We here propose to analyse the quality of the Pareto fronts
obtained with the two algorithms, to verify that the speedup obtained with the

Instance NSGA-II CCNSGA-II Speedup

21900 569.62 121.18 4.70

22200 2159.40 479.35 4.50

22500 1892.97 450.23 4.20

25500 141387.52 29676.34 4.76

25800 192580.75 42622.23 4.52

26099 386924.15 83420.32 4.64

 0

 1

 2

 3

 4

 5

 6

21900

22200

22500

25500

25800

26099

A
v
er

ag
e

sp
ee

d
u
p

Instance Number

Fig. 3. Execution times and speedup numbers (left) and speedup plots (right).

HPCLatAm 2013 - Page 22

Table 3. Quality measures for the NSGA-II and asynchronous CCNSGA-II

SPREAD EPSILON

Instance NSGA-II CCNSGA-II Conf. NSGA-II CCNSGA-II Conf.

21900 6.55e− 014.5e−02 7.32e− 017.9e−02 N 7.00e+ 000.0e+00 1.67e+ 002.1e−08 O
22200 6.85e− 014.6e−02 7.70e− 014.7e−02 N 3.00e+ 000.0e+00 1.40e+ 007.0e−02 O
22500 7.25e− 013.8e−02 7.44e− 016.7e−02 − 4.00e+ 000.0e+00 1.90e+ 002.9e−02 O
25500 8.56e− 011.1e−01 7.41e− 014.1e−02 O 1.57e+ 014.3e+00 2.93e+ 009.0e−01 O
25800 8.36e− 017.2e−02 7.49e− 017.0e−02 O 8.87e+ 004.1e+00 3.14e+ 001.2e+00 O
26099 7.31e− 011.1e−01 7.86e− 015.2e−02 N 1.56e+ 016.7e+00 4.00e+ 001.4e+00 O

parallel coevolutionary algorithm does not come to the price of lower solution
quality.

Table 3 presents the results we obtained (as mean and standard deviation)
with NSGA-II and CCNSGA-II for the six considered problem instances accord-
ing to the spread (∆), and unary additive epsilon (I1

ε+) quality metrics. The best
obtained results are shadowed in with dark grey colour. Statistical confidence in
the results is assessed using the Wilcoxon unpaired signed-ranks test. It is rep-
resented in the Table by N if NSGA-II is statistically better, by O if statistically
worse and by − if no significant difference was found.

Regarding the diversity of solutions measured by the SPREAD, the NSGA-
II is statistically better for half of the instances (i.e., 21900, 22200 and 26099),
while the CCNSGA-II is better for two instances and finally no statistical dif-
ference is found on the 25500 instance. The difference in terms of convergence
is very significant since CCNSGA-II outperforms NSGA-II in all instances with
statistical confidence. These results demonstrate that in average the CCNSGA-II
permits to improve the quality of solutions of the NSGA-II.

6 Conclusion

This article has proposed to apply for the first time a parallel asynchronous
cooperative coevolutionary NSGA-II (CCNSGA-II) on a real-world problem,
i.e., the injection network problem in VANETs. Its performance in terms of
execution time and solution quality has been compared to the standard NSGA-
II. Experimental results have demonstrated that super-linear speedup has been
obtained on all problem instances. In addition, the convergence of the obtained
Pareto fronts could be improved with statistical confidence for all cases as well
as their diversity for some of them.

Future works will focus on studying the possible additional speedup with
higher numbers of subpopulations and on using other state-of-the-art MOEAs
like SPEA2 and MOCell on the same topology control problem in VANETs.

Acknowledgements

B. Dorronsoro acknowledges the support offered by the National Research Fund,
Luxembourg, AFR contract no 4017742.

HPCLatAm 2013 - Page 23

References

1. C. A. Coello Coello, G. B. Lamont, and D. A. Veldhuizen. Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer, 2007. Second edition.

2. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on,
6(2):182–197, 2002.

3. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable multi-objective opti-
mization test problems. In Congress on Evolutionary Computation (CEC), pages
825–830, 2002.

4. B. Dorronsoro, G. Danoy, A. J. Nebro, and P. Bouvry. Achieving super-linear
performance in parallel multi-objective evolutionary algorithms by means of coop-
erative coevolution. Computers & Operations Research, 40(6):1552 – 1563, 2013.

5. A. W. Iorio and X. Li. A cooperative coevolutionary multiobjective algorithm
using non-dominated sorting. In GECCO (1), pages 537–548, 2004.

6. N. Keerativuttitumrong, N. Chaiyaratana, and V. Varavithya. Multi-objective
co-operative co-evolutionary genetic algorithm. In International Conference on
Parallel Problem Solving From Nature PPSN, volume 2439 of Lecture Notes in
Computer Science (LNCS), pages 288–297. Springer-Verlag, 2002.

7. K. Maneeratana, K. Boonlong, and N. Chaiyaratana. Multi-objective optimisation
by co-operative co-evolution. In PPSN, pages 772–781, 2004.

8. J. Mao, K. Hirasawa, J. Hu, , and J. Murata. Genetic symbiosis algorithm for
multiobjective optimization problem. In Proceedings of the 2001 Genetic and Evo-
lutionary Computation Conference, pages 267–274, San Francisco, California, 2001.

9. A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. MOCell: A cel-
lular genetic algorithm for multiobjective optimization. International Journal of
Intelligent Systems, 24:726–746, 2009.

10. S.S. Nielsen, B. Dorronsoro, G. Danoy, and P. Bouvry. Novel efficient asynchronous
cooperative co-evolutionary multi-objective algorithms. In Evolutionary Compu-
tation (CEC), 2012 IEEE Congress on, pages 1–7, 2012.

11. Y. Pigné, G. Danoy, and P. Bouvry. A vehicular mobility model based on real
traffic counting data. In Proc. 3rd International Workshop on Communication
Technologies for Vehicles (Nets4Cars 2011), volume 6596, pages 131–142. Springer,
LNCS, 2011.

12. M.A. Potter and K. De Jong. A cooperative coevolutionary approach to function
optimization. In Parallel Problem Solving from Nature (PPSN III), pages 249–257.
Springer, 1994.

13. J. Schleich, G. Danoy, B. Dorronsoro, and P. Bouvry. An overlay approach for
optimising small-world properties in vanets. In AnnaI. Esparcia-Alczar, editor,
Applications of Evolutionary Computation, volume 7835 of Lecture Notes in Com-
puter Science, pages 32–41. Springer Berlin Heidelberg, 2013.

14. K. C. Tan, Y. J. Yang, and C. K. Goh. A distributed cooperative coevolutionary
algorithm for multiobjective optimization. IEEE Transactions on Evolutionary
Computation, 10(5):527–549, 2006.

15. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393(6684):440–442, 1998.

16. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation, 8(2):173–195, 2000.

17. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto
evolutionary algorithm. Technical Report 103, Computer Engineering and Net-
works Laboratory (TIK), ETH Zurich, 2001.

HPCLatAm 2013 - Page 24

