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Abstract. Parameter Sweep Experiments (PSEs) allow scientists to perform sim-
ulations by running the same code with different input data, which results in many
CPU-intensive jobs and thus computing environments such as Clouds must be
used. Our goal is to study private Clouds to execute scientific experiments com-
ing from multiple users, i.e., our work focuses on the Infrastructure as a Service
(IaaS) model where custom Virtual Machines (VM) are launched in appropriate
hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very impor-
tant and it is necessary to develop efficient scheduling strategies to appropriately
allocate VMs to physical resources. Here, scheduling is however challenging due
to its inherent NP-completeness. We describe and evaluate a Cloud scheduler
based on Particle Swarm Optimization (PSO). The main performance metrics
to study are the number of Cloud users that the scheduler is able to successfully
serve, and the total number of created VMs, in online (non-batch) scheduling sce-
narios. Besides, the number of intra-Cloud network messages sent are evaluated.
Simulated experiments performed using CloudSim and a job data from real scien-
tific problems show that our scheduler succeeds in balancing the studied metrics
compared to schedulers based on Random assignment and Genetic Algorithms.

1 Introduction

Cloud Computing [4] suits well in executing scientific experiments, because of its
promise of provisioning infinite resources. Within a Cloud, resources can be effectively
and dynamically managed using virtualization technologies. Moreover, Cloud providers
offer their services according to three fundamental models: infrastructure, platform, and
software as services. Although the use of Clouds finds its roots in IT environments, the
idea is gradually entering scientific and academic ones [16].

This work is focused on the Infrastructure as a Service (IaaS) model, whereby users
request virtual machines (VM) to the Cloud, which are then associated to physical re-
sources. However, in order to achieve the best performance, VMs have to fully utilize
the physical resources. To perform this, scheduling the processing units of physical
Cloud resources is an important issue and it is necessary to develop efficient schedul-
ing strategies to appropriately allocate the VMs in physical resources. Here, schedul-
ing refers to the way VMs are allocated to run on the available computing resources.
However, scheduling is an NP-complete problem and therefore it is not trivial from an



algorithmic perspective. In this context, scheduling may also refer to two goals, namely
delivering efficient high performance computing (HPC) or supporting high throughput
computing (HTC). HPC focuses on decreasing job execution time whereas HTC aims
at increasing the processing capacity of the system. As will be shown, our proposed
scheduler attempts to balance both aspects.

Swarm Intelligence (SI) [3] has received increasing attention among researchers,
and refers to the collective behavior that emerges from social insects swarms to collec-
tively solve complex problems. Hence, researchers have proposed algorithms for com-
binatorial optimization problems [3]. Moreover, scheduling in Clouds is also a combi-
natorial optimization problem, and hence schedulers exploiting SI have been proposed.

Unlike our previous work [14], where an ant colony optimization (ACO) was used
in batch scheduling scenarios, this paper proposes a PSO scheduler to allocate VMs
to physical Cloud resources, and evaluates its performance in an online Cloud (non-
batch) scenario as the one in [16], where multiple users connect to the Cloud at different
times to execute their PSEs. Experiments have been conduced to evaluate the number
of serviced users (which relates to throughput) among all users that are connected to
the Cloud, and the total number of VMs that are allocated by the scheduler (which
relates to response time). The more the users served, the more the executed PSEs, and
hence throughput increases. Moreover, when more VMs can be allocated, more physical
resources can be taken advantage of, and hence PSE execution time decreases.

To quantify this trade-off, we use a weighted metric in which the results obtained
from different scheduling algorithms have been normalized and weighted to determine,
from the evaluated algorithms, which one better balances the aforementioned metrics.
For this, two weights have been assigned to the individual metrics, i.e., a weigh for the
number of serviced users (wSU) and a weight for the number of created VMs (wVMs).
Then, we use a mixed HTC/HPC scenario by assigning weights (0.5, 0.5) with the aim
of balancing the two basic metrics. Besides, we measure network resources consumed.
Experiments performed by using the CloudSim toolkit [5], together with job data ex-
tracted from a real-world PSE and other scheduling policies for Clouds show that our
PSO performs competitively with respect to the used metrics.

Section 2 gives preliminary concepts. Section 3 surveys related works. Section 4
describes the PSO scheduler, while Section 5 evaluates it. Section 6 concludes the paper.

2 Background

2.1 Cloud Computing basics

Clouds [4] refers to a set of technologies that offer computing services through a net-
work. A related important feature is the ability to scale up and down the computing
infrastructure according to resource requirements.

Central to any Cloud is the concept of virtualization, i.e., the capability of a soft-
ware system of emulating various operating systems on a single machine. By means of
this support, users exploit Clouds by requesting them VMs that emulate any operating
system on top of several physical machines, which in turn run a host operating system.
Particularly, for scientific applications, the use of virtualization has shown to provide
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many useful benefits, including user-customization of system software and services, and
the value of Clouds has been already recognized within the scientific community [21].

While Clouds help scientific users to

run complex applications, job and VM User 1 User2 UserM
management is a key concern that must ’ S ’
be addressed. Broadly, job scheduling is

a mechanism that maps jobs/VMs to ap- "

propriate resources to execute, and the a ) !

delivered efficiency will directly affect C LANIWAN

the performance of the whole distributed — o
environment. Moreover, Cloud resources ][]
need to be scheduled at two levels /

and through a VM scheduler the VMs are

. . . . /Log‘i‘ca\ clus-
niques, jobs are assigned for execution ters (VMs)
entific users connect via a network and resources
in order to more efficiently solve the allo- Fig. 1: High-level view of a Cloud

(Fig. 1): Infrastructure-level and VM- | Job Scheduler |
level. At the Infrastructure-level, one or
more Cloud infrastructures are created / \( \
— " »— N
allocated into real hardware. Then, at the
VM-level, by using job scheduling tech-
into allocated virtual resources. Fig. 1 il- | VM Scheduler |
lustrates a Cloud where one or more sci- e
ysical
require the creation of a number of VMs &= (& ﬁ = e
for executing their PSEs. ﬁj @ ' ﬁﬂ
We focus on the Infrastructure-level
cation of VMs to physical resources in a dynamic, multi-user Cloud. However, job/VM
scheduling is NP-complete, and therefore approximation heuristics are necessary.

2.2 Particle Swarm Optimization (PSO)

PSO [3] is a population-based optimization technique that finds solution to a problem
in a search space by modeling and predicting insect social behavior in the presence
of objectives. The general term “particle” is used to represent birds, bees or any other
individuals who exhibit social behavior as group and interact with each other.

Under PSO, multiple candidate solutions —called particles— coexist and indirectly
collaborate simultaneously. Each particle “flies” in the problem search space looking for
the optimal position to land. A particle adjusts its position as time passes according to its
own experience as well as according to the experience of neighbor particles. Moreover,
particles are essentially described by two characteristics: the particle position, which
defines where the particle is located with respect to other solutions in the search space,
and the particle velocity, which defines the direction and how fast the particle should
move to improve its fitness. The fitness of a particle is a number representing how close
a particle is to the optimum point compared to other particles in the search space.

The basic PSO algorithm, which minimizes an objective function f(x) of a variable
vector x defined on a n-dimensional space, uses a swarm of m particles. Each parti-
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cle i of the swarm is associated with a position in a continuous n-dimensional search
space. Similarly, the velocity is also an n-dimensional vector. Denoting with xf‘ and vff
respectively the position and velocity of particle i at iteration k of the PSO algorithm,
the following equations are used to iteratively modify the velocities of the particles and
positions: VW1 = ws vk +cLurl«(pbest;— x¥)+c2xr2x(gbest—xF), and XX+ = xk 45+,
where vf.‘“ represents the distance to be traveled by the particle from its current position
in the k" iteration, xf,‘“represents the particle position in the k" iteration, w is the inertia
parameter that weights the previous particles velocity, i.e., w controls the impact of pre-
vious historical values of particle velocities on its current velocity, pbest represents its
best personal position (i.e. its experience), and gbest represents the best position among
all particles in the population. Parameters c/ and c2 are positive constant parameters
called acceleration coefficients which control the maximum step size of the particle and
determine the relative “pull” of pbest and gbest. The parameter c/ is a factor determin-
ing how much the particle is influenced by the nostalgia or memory of his best location,
and c2 is a factor determining how much the particle is socially influenced by the rest of
the swarm. Parameters »/ and 72 are two random numbers uniformly distributed in [0,
1] that are used to weight the velocity toward the particle personal best — (pbest; — xf.‘)—
and toward the global best solution —(gbest — xf)— found so far by the swarm.

According to the velocity equation, a particle decides where to move next, consider-
ing its own experience, which is the memory of its best past position, and the experience
of the most successful particle in the swarm. The new particle position is determined
by adding to the particle current position the new velocity computed.

3 Related work

The last decade has witnessed an astonishingly amount of research in SI [13,18,19].
As shown in recent surveys [20,22], SI has been increasingly applied to distributed job
scheduling. However, with regard to scheduling in Cloud environments, very few works
can be found to date [15]. Moreover, to the best of our knowledge, no effort aimed to job
scheduling based on SI for online Clouds have been proposed and evaluated. By online
we mean non-batch scenarios, i.e., where the jobs to be executed in the Cloud is not
available beforehand. In most related works, SI techniques are used to specifically solve
job scheduling, i.e., they determine how the jobs are assigned to VMs, but few efforts
are aimed at solving VM scheduling, i.e., how to allocate VMs to physical resources.
Among these two groups we can mention the following works.

In [17] propose a PSO algorithm to schedule jobs that are targeted at paid Clouds,
i.e., those that charge users for CPU, storage and network usage, to minimize mon-
etary cost. The algorithm considers both job computation costs and job data transfer
costs. Moreover, this approach is based on static resource allocation, which forces users
to feed the scheduler with the estimated running times of jobs on the set of Cloud re-
sources to be used. Another relevant approaches are [11,24]. In [11] the authors propose
a PSO algorithm to solve the problem of load balancing in VMs. The goal of this work
was to minimize the execution time of the jobs. In the work [24] an improved PSO
is proposed to reduce job average execution time and increase the rate availability of
resources. Finally, in [9] the authors propose a novel self-adaptive Particle Swarm Opti-
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mization scheduler to map efficiently a set of VM instances onto a set of Cloud physical
resources and reduce energy consumption. Indeed, energy consumption has become a
crucial problem [10], on one hand because it has started to limit further performance
growth due to expensive electricity bills, and also by the environmental impact in terms
of carbon dioxide (CO2) emissions caused by high energy consumption.

Another relevant approaches, but based on ACO, are the works in [6,2,23]. In [6],
the authors propose a scheduler to compute the placement of VMs according to the cur-
rent load of the physical resources and minimize the energy consumption. The authors
claim that, from the business perspective, reducing the energy consumption can lead
to immense cost reductions. Moreover, the higher power consumption, the higher heat
dissipation, and therefore the probability of hardware failures increases. In [2,23] the
authors have proposed ACO-based Cloud schedulers for mapping jobs-VMs. The goal
was to minimize makespan and maximize load balancing, respectively. Makespan is the
maximum execution time of a set of jobs. Flowtime is the sum of job finish times minus
job arrive times of a set of jobs. An interesting aspect of [2] is that it was evaluated
using real Cloud platforms (Google App Engine and Microsoft Live Mesh), whereas
the other work was evaluated through simulations. However, during the experiments,
[2] used only 25 jobs and a Cloud comprising 5 machines.

The mentioned do not focus on addressing multiple users, thus rendering difficult
their applicability to execute scientific experiments in online, shared Cloud environ-
ments. The next Section explains our approach to PSO-inspired Cloud scheduling.

4 Proposed scheduler

We address the scheduling problem where a number of users connect to the Cloud at
different times to execute their PSEs, and each user requests the creation of v VMs.
A PSE is a set of N independent jobs, each corresponding to a particular value for
a variable of the model being studied by the PSE. A user’s jobs are distributed and
executed on the v VMs created for him. Since the total number of VMs required by all
users is usually greater than the number of Cloud physical hosts, a strategy that achieves
a good use of these physical resources is needed. This strategy is implemented by means
of a support that allocates user VMs to hosts. Moreover, a strategy for assigning user
jobs to allocated VMs is also necessary (currently we use FIFO).

To implement the VM allocation part of the scheduler, the Grid scheduler proposed
in [12] has been adapted to Clouds. In our adapted algorithm, all hosts belonging to a
Cloud are considered a swarm and each host in the Cloud is a particle in this swarm.
Following the analogy from the classical PSO, the position of each host in the swarm
can be determined by its load (see Algorithm 1). This definition helps to search in the
load search space and try to minimize the load. Every time a user requires a VM, it is
initialized in a random host (getInitialHost()) and each host in the search space
takes a position according to its load through the calculateTotalLoad(hostId)
method. Load refers to the total CPU utilization within a host and is calculated as load =
vmTotalMips/hostT otalMips, where vmTotalMips is an estimation of the amount of
processing power used by the VMs that are executing in the host, and hostTotalMips is
the (hardware-given) total amount of processing power in the host. The neighborhood of
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Algorithm 1 PSO-based Cloud scheduler: Core logic

Procedure PSOallocationPolicy (vm, hostList)
Begin
i=0, networkMessages=0, velocity=—
particle = new Particle (vm, hostList)
initialHostld = particle. getlnitialHost ()
currentPositionLoad = particle.calculateTotalLoad (initialHostlId)
neighbours = particle.getNeighbours(initialHostId , neighbourSize)
While (i < neighbours.size()) do
neighbourld = neighbours.get(i)
destPositionLoad = particle.calculateTotalLoad (neighbourld)

networkMessages++
if (destPositionLoad == 0)
currentPositionLoad = destPositionLoad

destHostld = neighbours.get(i)
i=neighbours.size ()

end if

if (currentPositionLoad — destPositionLoad > velocity)
velocity = currentPositionLoad — destPositionLoad
currentPositionLoad = destPositionLoad
destHostld = neighbours.get(i)

end if

i++

end while
allocatedHost=hostList.get(destHostld)
if (! allocatedHost.allocateVM (vm)
PSOallocationPolicy (vm, hostList)
End

that particle is also obtained through getNeighbors(hostId,neighborSize). Each
one of the neighbors in the neighborhood are selected randomly as this delivers the best
results. The size of the particle neighborhood is a parameter defined by the user.

In each iteration of the algorithm, a particle moves through its neighbors searching
for less loaded hosts. The velocity of each particle is defined by the load difference that
a host has compared to its other neighbors hosts. If any of the hosts in the neighborhood
has a lower load than the original host, then the VM is moved to the neighbor host with
a greater velocity. Taking into account that the particles move through hosts of their
neighborhood in search of a host with the lower load, the algorithm reaches a local
optimum quickly. Thus, each particle makes a move to one of its neighbors, which has
the minimum load among all. If all its neighbors are busier than the host itself, the VM
is not moved from the current host. Finally, the particle delivers its associated VM to
the host with the lower load among their neighbors and finishes its task.

Since each move that a particle performs, involves moving through the network,
we consider a tactic to minimize the number of moves: every time a particle moves
to a neighbor host that has not allocated VMs yet, the particle allocates its associated
VM to it directly without performing further steps. The number of messages sent over
the network by a particle to their neighbors hosts to obtain information regarding their
availability —load— is accumulated in the networkMessages variable.

In our algorithm, there are some issues related to the classical PSO. First, a particle
only moves toward its best local neighbor, while in the classical PSO algorithm parti-
cles keep track of the best global solutions so far. The velocity of each particle takes
the following form: V**! = (gbest — xf.‘). Since we are dealing with a dynamic Cloud

i
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environment, the use of the past experience of each particle is not useful, therefore, zero
value is assigned to cl to neutralize the effect of the past history of the particle. Also,
the previous velocity should not have effect in the particle decision, therefore, a zero
value is assigned to w as well. On the other hand, since we want to use the neighbor-
hood to identify and decide which neighbor represent the best move, we set ¢2 = 1.
The formula for updating a particle position is x¥*! = x* + &*1 which is equal to the
neighbor load to which the particle have the move, i.e., the position of a particle is its
load value, which changes as the particle moves to its neighbors.

5 Evaluation

We have processed a real study case for solving a well-known benchmark problem [7].
The problem involves studying a 18 x 10 m plane strain plate with a central circular
hole, with R = 5 m. The 2D finite element mesh used had 1,152 elements. To generate
the PSE jobs, a material parameter —viscosity — was selected as the variation parameter.
Then, 25 different viscosity values for the n parameter were considered, namely x.10”
Mpa, with x = 1,2,3,4,5,7and y = 4,5,6,7, plus 1.108 Mpa. Introductory details on
viscoplastic theory and numerical implementation can be found in [7].

First, we run the PSE experiments in a single machine by varying the viscosity
parameter 77 as indicated and measuring the execution time for the 25 different experi-
ments, which resulted in 25 input files with different input configurations and 25 output
files. The tests were solved using the SOGDE finite element solver software [8]. The
machine on which the tests were carried out is an AMD Athlon(tm) 64 X2 Dual Core
Processor 3600+, with 2 GBytes of RAM, 400 Gbytes of storage, and a bandwidth
of 100 Mbps. By means of the generated job data, we instantiated CloudSim. The ex-
perimental scenario consists of a datacenter with 10 physical resources with similar
characteristics as the real machine where SOGDE was performed. The characteristics
are 4,008 MIPS (processing power), 4 GBytes (RAM), 400 GBytes (storage), 100 Mbps
(bandwidth), and 4 CPUs. Then, each user connecting to the Cloud requests v VMs to
execute their PSE. Each VM has one virtual CPU of 4,008 MIPS, 512 Mbyte of RAM,
a machine image size of 100 Gbytes and a bandwidth of 25 Mbps. For details about the
job data gathering and the CloudSim instantiation process, please see [14].

Moreover, we modeled two online Cloud scenarios in which new users connect to
the Cloud every 90 and 120 seconds, respectively, and require the creation of 10 VMs
each in which their PSEs —a set of 100 jobs— run (the base job set comprising 25 jobs
obtained by varying the value of i was cloned to obtain larger sets). The number of
users who connect varies as u = 10, 20, ..., 100, and since each user runs one PSE, the
total number of jobs to execute is increased as n = 100 = u each time. Each job, called
cloudlet by CloudSim, had a length which varied between 244,527 and 469,011 Million
Instructions (MI). Moreover, each job needs only one processing element (PE) or core
to be executed. Then, we assumed a 1-1 job-VM execution model, i.e., jobs within a
VM waiting queue are executed one at a time by competing for CPU time with other
jobs from other VMs in the same hosts. In other words, a time-shared CPU scheduling
policy was used, which ensures fairness. Lastly, the input file size and output file size
had 93,082 and 2,202,010 bytes, respectively.
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5.1 Performed comparisons

Our PSO algorithm was compared against another three schedulers. First, the genetic
algorithm (GA) from [1], which is algorithmically related to our work and has been
evaluated via CloudSim as well. The population structure represents the set of physical
resources that compose a datacenter, and each chromosome is an individual in the pop-
ulation that represents a part of the searching space. Each gene (field in a chromosome)
is a physical resource in the Cloud, and the last field in this structure is the fitness field,
which indicate the suitability of the hosts in each chromosome. Second, a Random al-
location in which the VMs requested by the different users are assigned randomly to
different physical resources. Although this algorithm does not provide an elaborated
criterion to allocate the VMs to physical resources, it offers a popular baseline to eval-
uate how our scheduler performs. A third alternative scheduler in the form of an Ideal
scheduler was used, which achieves the best possible allocation of VMs to physical re-
sources in terms of the studied metrics. To allocate all the VMs, the scheduler uses a
retry strategy until it is able to serve all users. The number of retries necessary to serve
all users and create all requested VMs was 9. This scheduler is only for comparison
purposes, however is not viable in practice because of the attempt overhead. In our ex-
periments, the GA-specific parameters were set with the following values: chromosome
size = 7 (6 genes for hosts and 1 gen for fitness), population size = 10 and number of
iterations = 10 and the PSO-specific parameter neighbourhood size = 6.

The experiments measured the trade-off between the number of serviced users by
the Cloud and the total number of created VMs among all users. The former increases
every time the scheduler successfully allocates any of the requested VMs of a user, and
the this latter is considered “serviced”. Then, we derived a weighted metric, by which
the results obtained from the different algorithms have been normalized and weighted

with numerical weights. The normalized values for each metric and each user group
Max(valueU;)—valueU;

"""" Max(valueU;)—-Min(valueU;) )’

where valueU is the obtained value for each one of the basic metrics —serviced users

and created VMs— and for each user group connected to the Cloud, Max(valueU) and
Min(valueU) are the maximum and minimum values, respectively, for each basic metric
among all the algorithms —-PSO, GA, Random, Ideal- and for each user group connected
to the Cloud. Moreover, the weighted metric is computed as: WeightedMetricU-yo,.100 =
(WS UxNormalS U;+wVMs+NormalV M sU;) where wSU is the weight given to the number
of serviced users by the Cloud (NormalSU) and wVMs weighs the total number of
created VMs (NormalVMs). Based on these, and since throughput is often the primary
limiting factor in many scientific and engineering efforts, and moreover, many scientists
and engineers are interested in obtaining their results as soon as possible, it is important
to give importance to both basic metrics. To perform this, we have assigned the pair of
weights (wSU, wVMs) equal to (0.50, 0.50).

Table 1 shows the obtained results, which arise from averaging 20 times the exe-
cution of each algorithm (little deviations were obtained). Both when users connect to
the Cloud every 90 and 120 seconds, the schedulers can not always serve all connected
users because a scheduler can not create the requested VMs by the users. The creation
of some VMs fails since at the moment a user issues the creation, all physical resources
are already fully busy with VMs belonging to other users. Depending on the algorithm,

HPCLatAm 2013 - Page 8



Table 1: Results: weighted metric

Users connected to the Cloud Gap =90 Gap = 120

PSO GA Random Ideal PSO GA Random Ideal
10 0.15 0.02 0.12 1 0.44 0.17 0.31 1
20 0.17 0.04 0.16 1 0.33 0.15 0.23 1
30 0.22 0.07 0.20 1 0.29 0.17 0.22 1
40 0.20 0.1 0.16 1 0.28 0.17 0.20 1
50 0.20 0.1 0.14 1 0.25 0.17 0.18 1
60 0.18 0.11 0.13 1 0.23 0.18 0.16 1
70 0.19 0.11 0.12 1 0.24 0.18 0.15 1
80 0.19 0.11 0.12 1 0.22 0.18 0.14 1
90 0.18 0.12 0.12 1 0.22 0.18 0.14 1
100 0.17 0.12 0.11 1 0.22 0.19 0.13 1

some schedulers are able to find to some extent a host with free resources to which at
least one VM per user is allocated. When the scheduler is not able to create at least one
of the requested VMs by a user, then the user is considered “not served”.

Among all approaches, excluding Ideal which is taken as reference of an ideal per-
formance, GA is the one that serves the least users but creates the most VMSs. This is
because the population size is 10, and each chromosome contains 6 different hosts, so
after 10 iterations GA has more chances to get the host with better fitness, and can thus
allocate more VMs to the first users who connect to the Cloud. Random serves more
users than PSO and GA but with less VMs. While Random serves many users, it may
not be fair with the response times for users, because the algorithm assigns the VMs to
physical resources randomly, and many of the creations of the VMs requested by users
might fail. There are situations where for a single user Random is able to create only one
VM where all jobs of the user are executed. This situation means that the user must wait
too long to complete their jobs. Finally, PSO achieves to serve a greater number of users
than GA and create a greater number of VMs than Random. As shown, the proposed
PSO algorithm delivers the best balance with respect to the number of serviced users
and the total number of created VMs, with gains %GainPs 0 = 100 - Segiedbeari@iadm 00 of
29.41% over GA and 35.29% over Random in the 100-user scenario and when users
connect every 90 seconds. Moreover, when users connect every 120 the gains of PSO
over GA and Random is 13.63% and 40.90%, respectively, in that scenario.

Next, we evaluate the number of network messages sent by each one of the stud-
ied schedulers. To achieve allocate the VMs into hosts, each scheduler must make a
different number of “queries” to hosts to determine their availability upon each VM al-
location attempt. These queries are performed through messages sent to hosts over the
network to obtain information regarding their availability. Fig. 2 illustrates the number
of network messages sent to hosts by each algorithm to allocate the VMs and when
users are connected to the the Cloud every 90 seconds (left subfigure) and 120 seconds
(right subfigure). The Ideal scheduler needs to send messages to hosts every time a VM
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Fig. 2: Results as the number of users increases: Number of network messages

is allocated to know the hosts states and to decide where to allocate the VM. Moreover,
as mentioned earlier, Ideal always performs a number of creation retries until all users
are served, which makes the number of messages sent even higher. It is important to
note, however, that the Ideal algorithm implementation was executed using the back-off
strategy with a number of retries equal to 9 to obtain the ideal values to reach. The
number of network messages sent to hosts rose from 3,500 to 63,200 and from 3,600
to 53,800 when the number of users connected to the Cloud went from 10 to 100, and
users join to Cloud every 90 seconds and 120 seconds, respectively.

Since GA contains a population size of 10 and chromosome sizes of 7 (6 genes for
hosts), to calculate the fitness function, the algorithm sends one message for each host
of the chromosome to know its availability and obtain the chromosome containing the
best fitness value. This is, the VM is allocated to a host belonging to the chromosome
with the best fitness value. The number of messages to send is equal to the number of
host within each chromosome multiplied by the population size. As Figure 2 shows, GA
heavily uses network resources, and the number of network messages sent varied from
10,372.3 to 107,477.1 and from 7,683 to 95,088.8 when the number of connected users
was increased from 10 to 100 and the gaps equal to 90 and 120 seconds, respectively.

Random sends one network message to a random host for each attempt of VM
creation, making the lowest network resource usage. The number of network messages
rose from 100 to 1,000 when the number of connected users to the Cloud went from
10 to 100 and both gaps. Finally, our PSO algorithm, however, makes less use of the
network resources than GA and the Ideal scheduler. Due to the fact that we configure
the neighborhood size to 6, PSO sends a maximum of 6 messages per VM allocation.
Moreover, when PSO finds an unloaded host, it allocates the current VM and does not
make any further move. This reduces the total number of network messages sent. The
number of network messages sent by PSO to hosts rose from 492.7 to 5,186.7 and from
493.2 to 5,182.5 when the number of users connected to the Cloud went from 10 to 100
and the gaps equal to 90 and 120 seconds, respectively. One point in favor is that, unlike
Ideal and GA, PSO sent messages in the order of 100-1000 as Random did.

To conclude, although Random sends few network messages, and the use of the net-
work is important in distributed environments, in most Clouds network interconnections
are fast. Moreover, as we shown previously, Random is a very inefficient algorithm in
terms of performance because it creates few VMs, and moreover, as we described in
our previous work [14], Random gets the worse performance in terms of makespan and
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flowtime in batch scenarios. These results are encouraging because they suggest that
PSO is close to obtaining the best possible solution balancing all the employed evalua-
tion metrics and making a reasonable use of the network resources.

6 Conclusions

PSE:s is a type of simulation that involves running a large number of independent jobs
and requires a lot of computing power. These jobs must be efficiently processed in the
different computing resources of a distributed environment such as the ones provided by
Cloud. Consequently, job scheduling in this context indeed plays a fundamental role. SI-
inspired algorithms have received increasing attention in the research community, and
refers to the collective behavior that emerges from a swarm of social insects. Through
studying social insect colonies, researchers have proposed algorithms for combinational
optimal problems. Moreover, job scheduling in Clouds is also a combinational optimal
problem, and some Sl-inspired schedulers have been proposed.

Existing related efforts do not address in general online environments where multi-
ple users connect to scientific Clouds to execute their experiments. To the best of our
knowledge, no effort aimed at balancing the number of serviced users in a Cloud and the
total number of created VMs by the scheduler exists. We have proposed a Cloud VM
scheduler based on PSO that considers these metrics. Simulated experiments performed
with CloudSim and real PSE job data suggest that our PSO scheduler provides a good
balance to these metrics. As alternative schedulers, we used Genetic Algorithms, Ran-
dom and an Ideal assignment. We have also evaluated the number of network messages
sent to the host by each one of the studied schedulers to allocate the VMs.

We plan to materialize our scheduler on top of a real Cloud platform, e.g., Open-
Nebula (http://opennebula.org/). We will also consider other Cloud scenarios, for
example, with heterogeneous machines. We will also evaluate how the variation of the
algorithm parameters (e.g., neighborhood size in PSO, chromosome size, population
size/number of iterations in GA) influence the performance and network consumption.
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