Exploring the use of light threads to improve the instruction level parallelism

D. González Márquez¹ A. Cristal Kestelman² <u>E. Mocskos¹</u>

¹Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EGA), Argentina.

²Barcelona Supercomputing Center, Artificial Intelligence Research Institute - CSIC, Barcelona (08034), Spain.

Mendoza, 30/7/2013

• The research in **processor architectures** centers in optimizing the processor design based on *performance, consumption, production cost, surface* etc.

- The research in **processor architectures** centers in optimizing the processor design based on *performance, consumption, production cost, surface* etc.
- Parallelism allows the hardware to **accelerate applications** by executing *multiple*, *independent operations concurrently*.

- The research in **processor architectures** centers in optimizing the processor design based on *performance, consumption, production cost, surface* etc.
- Parallelism allows the hardware to **accelerate applications** by executing *multiple*, *independent operations concurrently*.
- Three levels:
 - instruction-level parallelism (ILP)
 - thread-level parallelism (TLP)
 - data-level parallelism (DLP)

More cores are coming

The improvements in processor technology give us more available cores

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

More cores are coming

The improvements in processor technology give us more available cores

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

But...

The applications and the programming models are not prepare for hundreds of cores.

E. Mocskos (DC-UBA)

Exploring the use of light threads

We propose a change in the whole system

Α

В

Two types of cores: full controlling cores and simple cores.

Simple example of interaction

The new processor is completely simulated with gem5 based on ALPHA architecture. Instructions added: mth_run, mth_delegate, mth_end and mth_syn.

4 CORE EXAMPLE

2 CORE EXAMPLE

The unbalanced load in the four cores case comes from the implemented algorithm: two cores remain idle while the other two compute the last stage of the merge.

But we can deal with smaller problems

- The proposal can effectively deal with very small problems.
- Standard tools need larger problems.
- Can execute small pieces of code in different simple processors.

- The proposal can effectively deal with very small problems.
- Standard tools need larger problems.
- Can execute small pieces of code in different simple processors.
- New processor organization and programming model.
- Need to further test with more processors.
- Need to add support from compilers and operating system.

Questions?