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Motivation

The equations being solved are the classical Navier-Stokes equations

ou

1
5t —|—(u~V)u:—;Vp—i—VVzu—i—f7 (1)

V-u=0, (2)
where u is the velocity field, p the pressure field, p the density
(constant), v the kinematic viscosity (constant) and f a body force per

unit volume. These equations are going to be solved using several
combination of boundary and initial conditions.

The objective is

m to develop a real time CFD application.



QUICK's workload distribution
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Figura 1: Porcentual workload of the two main computations. Advection
scheme: QUICK.



QUICK's workload distribution (cont.)

The most important consideration that is involved with Figure 1 is that
the Poisson step is the most time consuming step in the Fractional-Step
algorithm used in the solution of Navier-Stokes equations.

In order to speed up the simulations one can choose between many
different situations. Thus, one option is

m trying to perform the least amount of Poisson steps;

m but as QUICK needs to satisfy the CFL (Courant-Friedrichs-Lewy

condition) constraint, some other scheme can be proposed in order
to relax this drawback;

m so, the Method of Characteristic (MOC) is used as a solution.



Method of characteristics

Lets consider for the moment a scalar field F that is being advected by
the velocity field u; mathematically
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where D(,)/Dt stands for material derivatives, i.e. following fluid
particles.
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Figura 2: The point C can be obtained driving along the solid line (AC), or
approximately, using the velocity field as a first order predictor (dashed line

AC).




Method of characteristics (cont.)

Analysis of stability properties of the Semi-Lagrangian advection scheme
shows that it is possible to stably integrate it for CFL numbers greater
than unit. In fact, in the simulations performed CFL's up to 5 are used.



BFECC method

Figura 3: Schematic BFECC operation over a streamline field and using L(.,.)
as the advection operator for the scalar field F.



BFECC method (cont.)

Considering the advection operator L(.,.) as the Semi-Lagrangian one,
BFECC is defined as follows
F*=1L(u,F")
F=L(-u,F")
F*=F"+(F"—F)/2
Frt = [ (u, F*)

In this way the order of accuracy of the Semi-Lagrangian scheme can be
raised from one to two increasing the amount of work by a factor of three.



CUDA implementation details

The whole Fractinal Step algorithm was implemented in CUDA !, using
the tools provided by Thrust 2 and Cusp 3 for linear algebra operations.
The FFT used was that provided by CUDA, CUFFT *.

1h‘ctps ://developer.nvidia.com/what_cuda
’http://code.google.com/p/thrust
Shttp://code.google.com/p/cusp_library
“https://developer.nvidia.com/cufft
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MOC+BFECC's workload distribution
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Figura 4: Porcentual workload of the two main computations. Advection
scheme: MOC+BFECC.



2D study case: lid-driven cavity

This is a classical internal flow test in a square domain. The shear
velocity imposed is fixed at v = 1 varying the kinematic viscosity in order
to reach the specified Reynolds number, Re.

shear sheet boundary
u = (v, 0)
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Figura 5: 2D lid-driven cavity configuration.



2D study case: lid-driven cavity

The numerical results obtained at Re = 1000 are shown on Figure 6.
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Figura 6: Results obtained at Re = 1000 using a grid of 512 x 512



2D study case: lid-driven cavity (cont.)

The performance obtained meassured in [secs/Mcells], this is, seconds of
computation in order to compute one million of nodes, is shown on
Table 1.

Cuadro 1: 2D lid driven cavity at Re = 1000. Performance, meassured in
[secs/Mcells], obtained by a GPGPU Nvidia GTX 580.

Simple Double
64 x 64 1.43 1.58
128 x 128 0.38 0.42
256 x 256 0.11 0.13
512 x 512 0.04 0.06

The main drawback in this study case is the Fourier number, Fo, limiting
the time step to a CFL of ~ 0,48.



2D study case: flow past circular cylinder

This classical external flow test. The lenght L and height H of the
computational domain are related to the diameter D of the cylinder by a
relation close to 1 : 15. This relation was chosen in order to minimize the
adverse effects of boundary condititions on the computation of drag
(Cq), lift (C) and Strouhal (St) coefficients.

Slip boundary
u = (v, 0)

Outflow
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Figura 7: 2D flow past circular cylinder configuration.



2D study case: flow past circular cylinder (cont.)

The body is represented as a staircase geometry. No-slip (u = 0) and
no-penetration (Vp - fi = 0) are imposed as boundary conditions on the
cylinder.

The results obtained at Re = 1000 are shown on Table 2.

Cuadro 2: 2D flow past cylinder at Re = 1000.

Cy C St

Present formulation 1.56 1.3 0.211
PFEM-2 1.639 1.63 0.2475
FEM 1.48 1.36 0.21

In this case, no Fo constrain is encountered, so a CFL ~ 4 to 5 can be
used.



2D study case: flow past circular cylinder (cont.)
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Figura 8: Time evolution of Cy and C;.



3D study case: lid-driven cavity

The numerical results obtained at Re = 1000 is shown on Figure 9.
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Figura 9: Results obtained at Re = 1000 using a grid of 128 x 128 x 128.



3D study case: lid-driven cavity (cont.)

For the case of 1283 ~ 2 [MCells] the performance obtained is about
20 [MCells/sec]. With this data at hand it is known than

2/20 = 0,1 [secs/timestep], this is, 10 time steps per second can be
performed. As the time step for this case is At = 0,01 [secs] it can be
seen that 0,1 [secs] of simulation can be performed in 1 [sec] of
computation.

Cuadro 3: 3D lid driven cavity at Re = 1000. Performance, meassured in
[secs/Mcells], obtained by a GPGPU Nvidia GTX 580.

Simple Double
64 x 64 x 64 0.08 0.19
128 x 128 x 128 0.05 0.13
192 x 192 x 192 0.05 0.13

Like the 2D case, the Fo is severely restricting the performance obtained.



(cont.)
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Figura 10: 3D lid-driven cavity.




3D study case: flow past circular cylinder

As an extension of the 2D case, the cylinder is now suposed to be infinite
at x dimension. In other words, periodic boundary conditions are going to

be used in that direction.
The results obtained at Re = 1000 are shown on Table 4.

Cuadro 4: 3D flow past cylinder at Re = 1000.

Cq G St
Experimental 1.00 0.21
Present formulation  1.021 0.533 0.183
PFEM-2 1.16 0.2to0.3 0.185
OpenFOAM 1.22 0.5 0.195

Lets do the same analysis of the previos study case. Considering now that
no Fo constrain is imposed and At = 0,023 the results shown that
0,23 [secs] of simulation can be performed in 1 [sec] of computation.



3D study case: flow past circular cylinder (cont.)

Re =1000
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Figura 11: Time evolution of C; and C,.



3D study case:

flow past circular cylinder (cont.)
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Figura 12: 3D flow past circular cylinder.



QUICK vs MOC+BFECC

Simple  [Mcell/sec] [Mcell/sec]
Cells QUICK BFECC

643 29.09 12.38
1283 75.74 18.00
1923 78.32 17.81

Double  [Mcell/sec] [Mcell/sec]
Cells QUICK BFECC

643 15.9 5.23
1283 28.6 7.29
1923 30.3 7.52

Cuadro 5: Computing rates for the whole NS solver (one step) in [Mcell/sec]
obtained with the BFECC and QUICK algorithms on a NVIDIA GTX 580. 3
Poisson iterations were used.



QUICK vs MOC+BFECC (cont.)

As a reference, the QUICK algorithm was implemented in CPU obtaining
a rate of 3.5 [Mcell/sec] (OpenMP) on an Intel i7-382003.47 GHz (Sandy
Bridge microarchitecture) for large 3D meshes (above 1 Mcell), i.e. 8.6
times slower with respect to the GPU(QUICK) version. Note that this
speedup obtained on the GPU is close to the 8x speedup factor obtained
for the FFT. This is normal, because for the QUICK implementation a
large part of the computing time is spent in the Poisson step.

The BFECC(GPU) is only 2.15 times faster than the QUICK(CPU)
version in Mcells/sec, but taking into account that the CFL is 10 times
larger, the overall speedup is 21.5, i.e. BFECC(GPU) is 21.5 times faster
than QUICK(CPU) in computing one second of the same physical
process.



Conclusions

m A CUDA implementation of the 3D viscous Navier-Stokes equations
was presented and its accuracy and performance were obtained using
two well-known study cases.

m The results shown good agreement with the references and, when
CFL > 2, BFECC performs better than the previous advection
scheme, QUICK.

m It must be recalled that, bodies are stair-case defined and
refinements are being explored by the authors at the moment.

m Also, new ways of solving diffusion equations is being studied too.
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