

List scheduling heuristics for virtual machine mapping in cloud systems

S. Nesmachnow S. Iturriaga

Universidad de la República Uruguay **B. Dorronsoro** E.-G. Talbi

P. Bouvry

INRIA/University of Lille University of Luxembourg France Luxembourg

- I. Motivations and Contributions
- 2. The Virtual Machine Mapping Problem
- 3. List Scheduling Algorithms
- 4. Experiments
- 5. Conclusions and Future Work

I. Motivations and Contributions

- 2. The Virtual Machine Mapping Problem
- 3. List Scheduling Algorithms
- 4. Experiments
- 5. Conclusions and Future Work

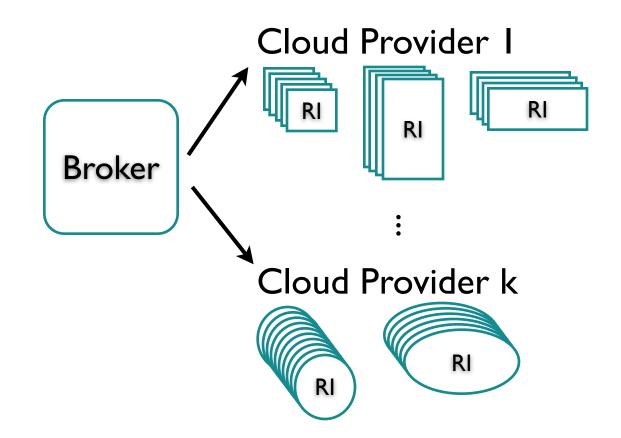
Motivations

- Cloud computing
 - Novel computing paradigm
 - Cloud service provisioning models: laaS, PaaS, SaaS
 - VMs that can be easily allocated and deallocated
 - Elasticity, flexibility, seemingly infinity of resources, etc.
- Broker: intermediary entity between cloud providers and users
 - Finding the best deal
 - 'Cloudifying' applications
- New business model for cloud
 - Book reserved instances (RI) on a number of cloud providers
 - Low investment
 - Sublet them to its customer as on-demand resources
 - 20% cheaper than the price cloud providers offer
 - Overloaded situations: cloud bursting

Contributions

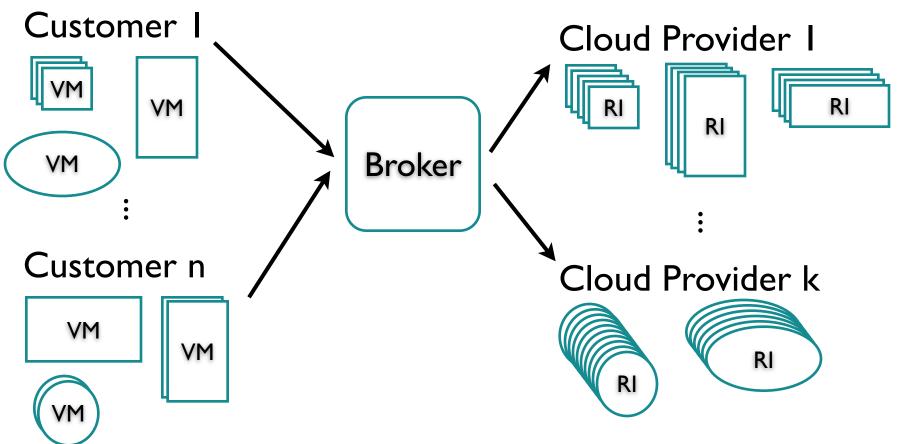
- Definition of the novel business model
- Formulation of the optimization problem that arises
- Resolution of the problem with 8 heuristics
- Generation of a novel benchmark
 - 400 instances
 - Diverse workloads and scenarios
 - Real pricing data (AWS and Azure)
 - Available: <u>http://www.fing.edu.uy/inco/grupos/cecal/hpc/VMMP</u>

I. Motivations and Contributions


2. The Virtual Machine Mapping Problem

- 3. List Scheduling Algorithms
- 4. Experiments
- 5. Conclusions and Future Work

The VMMP Problem



• Allocate all customers VMs requests into the available RIs

The VMMP Problem

• Allocate all customers VMs requests into the available RIs

j = m $(p(BF(v_i)) - C(b_j)) \times T(v_i)$ max $i:f(v_i)=b_i$ j=1 $(p(BF(v_h)) - COD(BF(v_h))) \times T(v_h)$ $h:ST(v_h) > D(v_h)$ Cost of deadline violations handling $M(v_i) \leq M(b_j) P(v_i) \leq P(b_j)$ subject to $S(v_i) \leq S(b_j), \ nc(v_i) \leq nc(b_j)$

The VMMP Problem

- I. Motivations and Contributions
- 2. The Virtual Machine Mapping Problem

3. List Scheduling Algorithms

- 4. Experiments
- 5. Conclusions and Future Work

List Scheduling Algorithms

Time

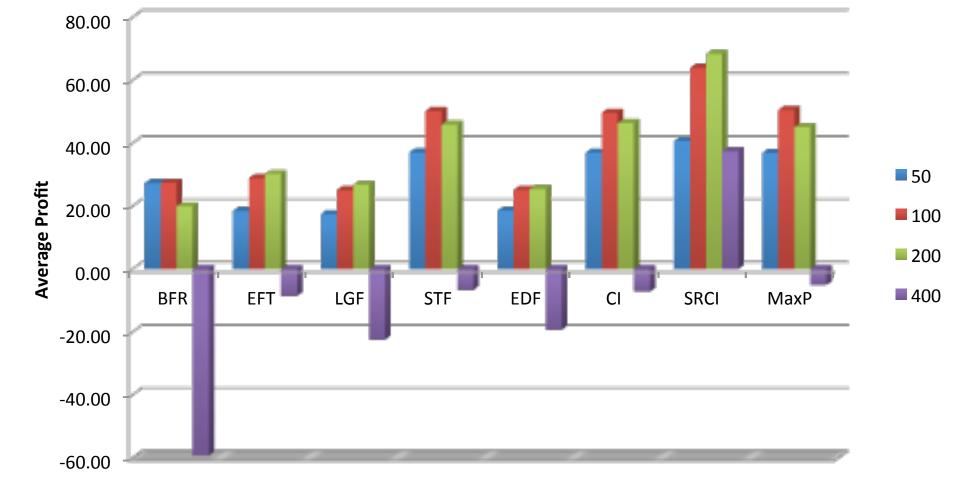
Cost

Time & Cost

- Best fit resource (BFR): assigns every VM to its most suitable RI
 - Earliest finish time (EFT): VMs that finish earlier first
 - Lower gap first (LGF): VMs with tightest deadlines first
- Shortest task first (STF):VMs with shortest execution time first
 - Earliest deadline first (EDF):VMs with earliest deadlines first (arrival time is not taken into account)
- Cheapest instance (CI): VMs are assigned to the cheapest RI that can execute it, in a FIFO
 - Max profit (MaxP): VMs that provide higher profit first
- Shortest request to cheapest instance (SRCI): Shortest VMs are first assigned to the cheapest instance that can execute them

- I. Motivations and Contributions
- 2. The Virtual Machine Mapping Problem
- 3. List Scheduling Algorithms
- 4. Experiments
- 5. Conclusions and Future Work

Experiments



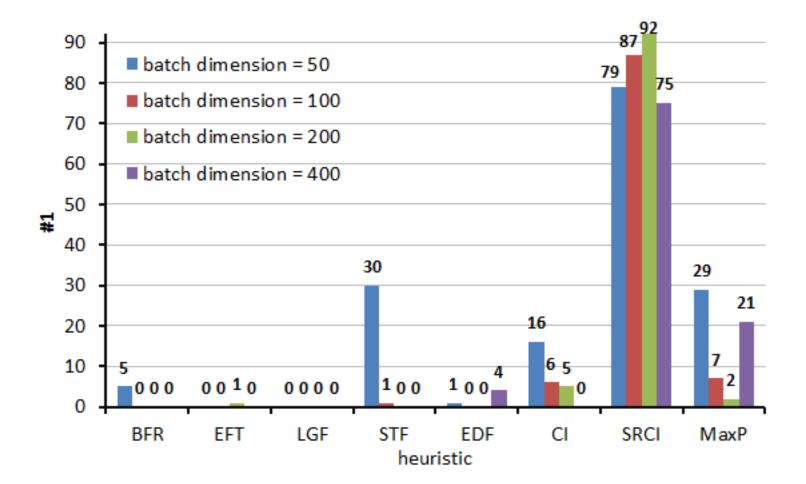
400 problem instances

- 20 workload files (information on VMs request)
 - Batches of 50, 100, 200, and 400 VMs
- 20 scenario files (information on available RIs)
 - 10, 20, 30, and 50 RIs (AWS and Azure data)
- 8 different kinds of VMs
- Available online
- Pricing: 20% cheaper than the cloud provider price

#	VM id	provider	memory	storage	proc.	nc	price	\mathbf{C}	COD
1	m1.small	Amazon	1.7 GB	160 GB	$1.0 \mathrm{GHz}$	1	0.048	0.027	0.06
2	m1.medium	Amazon	$3.75~\mathrm{GB}$	$410 \ \mathrm{GB}$	$2.0 \mathrm{GHz}$	2	0.096	0.054	0.12
3	A2.medium	Azure	$3.5~\mathrm{GB}$	$489 \mathrm{GB}$	$1.6 \mathrm{GHz}$	2	0.096	0.09	0.12
4	m1.large	Amazon	$7.5~\mathrm{GB}$	$850~\mathrm{GB}$	$2.0 \mathrm{GHz}$	4	0.192	0.108	0.24
5	m2.xlarge	Amazon	$17.1 \ \mathrm{GB}$	420 GB	$3.25~\mathrm{GHz}$	2	0.192	0.136	0.24
6	A3.large	Azure	$7.0~\mathrm{GB}$	$999 \ \mathrm{GB}$	$1.6 \mathrm{GHz}$	4	0.328	0.18	0.41
7	c1.xlarge	Amazon	$7.0~\mathrm{GB}$	1690 GB	$2.5 \mathrm{GHz}$	8	0.384	0.316	0.48
8	A4.xlarge	Azure	14.0 GB	$2039~\mathrm{GB}$	$1.6~\mathrm{GHz}$	8	0.464	0.36	0.58

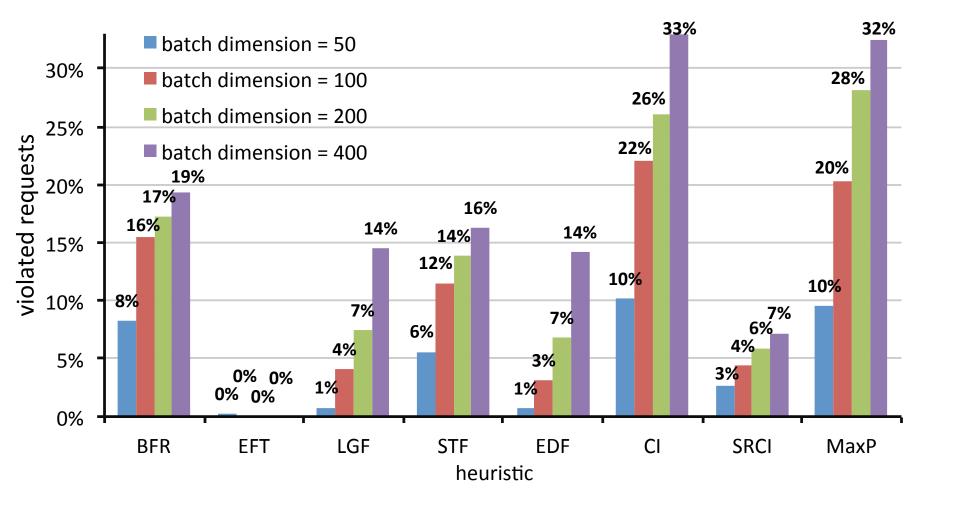
Results: Broker Profit

Inventeurs du monde numérica



• Friedman test

			overall					
	-	50	100	200	400	Overall		
	\mathbf{BFR}	5.35	6.34	6.50	7.59	6.44		
	\mathbf{EFT}	6.61	5.81	5.25	4.26	5.48		
tic	\mathbf{LGF}	6.76	6.44	5.82	5.47	6.12		
heuristic	STF	2.99	3.36	3.77	4.20	3.58		
IN	\mathbf{EDF}	6.41	6.19	6.03	5.33	5.99		
he	\mathbf{CI}	3.17	3.56	3.61	4.21	3.64		
	SRCI	1.71	1.16	1.10	1.41	1.34		
	MaxP	3.02	3.14	3.92	3.54	3.41		


Results: Broker Profit

Results: Violated Requests

- I. Motivations and Contributions
- 2. The Virtual Machine Mapping Problem
- 3. List Scheduling Algorithms
- 4. Experiments
- 5. Conclusions and Future Work

Conclusions & Future Work

- Novel cloud brokering model
 - Reserved nodes are sublet in an on-demand basis
 - Profitable: large difference between on-demand and reserved VMs cost
- VMMP: novel problem to plan the resources utilization
 - VMs requests must be mapped into RIs, maximizing profit
 - Constraint violations imply profit reduction
- Eight heuristics to solve the problem
 - SRCI outperformed the others
- Future work
 - Use of metaheuristics
 - Consider nesting technology
 - Development techniques for accurately managing the number and kind of RIs

Thank you.