Optimising Small-World Properties in VANETs with a Parallel Multi-Objective Coevolutionary Algorithm

Grégoire Danoy, Julien Schleich, Bernabé Dorronsoro and Pascal Bouvry

HPCLATAM 2013 July 29, 2013

- 1. Introduction
- 2. Asynchronous Parallel CCNSGA-II
- 3. Injection Network Problem
- 4. Experimental Setup
- 5. Numerical Results
- 6. Conclusion and Perspectives

1. Introduction

- 2. Asynchronous Parallel CCNSGA-II
- 3. Injection Network Problem
- 4. Experimental Setup
- 5. Numerical Results
- 6. Conclusion and Perspectives

Introduction

Motivation

- Real-world (RW) problems are typically multi-objective
- MOEAs show limitations on such large-scale problems
- Cooperative coevolutionary MOEAs are one promising option, but few works:
 - applied them on RW problems,
 - exploit their parallelization capabilities.

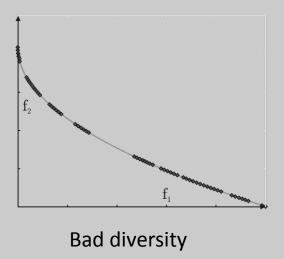
Objectives

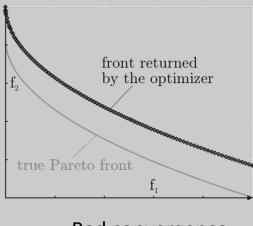
- Apply for the first time a parallel asynchronous cooperative coevolutionary MOEA
- Optimize a topology control problem in VANETs
- Analyze its performance (speedup, quality)

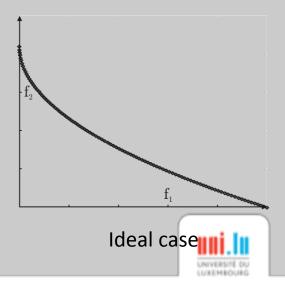
- 1. Introduction
- 2. Asynchronous Parallel CCNSGA-II
- 3. Injection Network Problem
- 4. Experimental Setup
- 5. Numerical Results
- 6. Conclusion and Perspectives

Multi-Objective Optimization

- Optimize more than one objective at the same time
 - Objectives are usually conflicting
 - Improving one means worsening the others
- Results in a set of non-dominated solutions
 - Pareto front
- Performance of approximate techniques
 - Convergence
 - Diversity



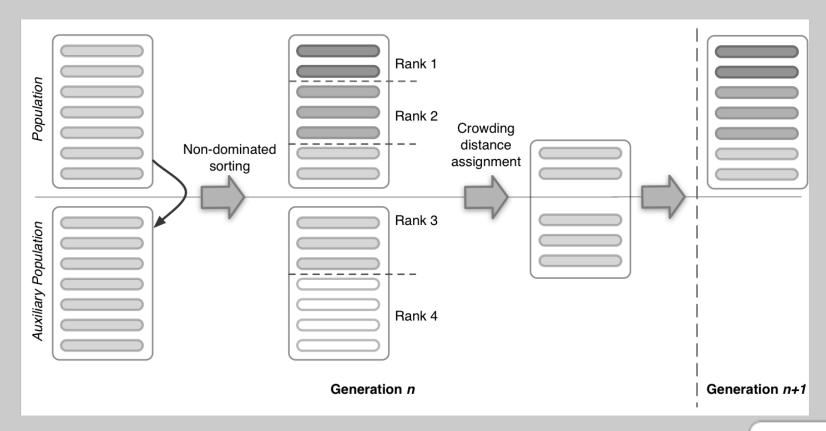




Bad convergence

NSGA-II

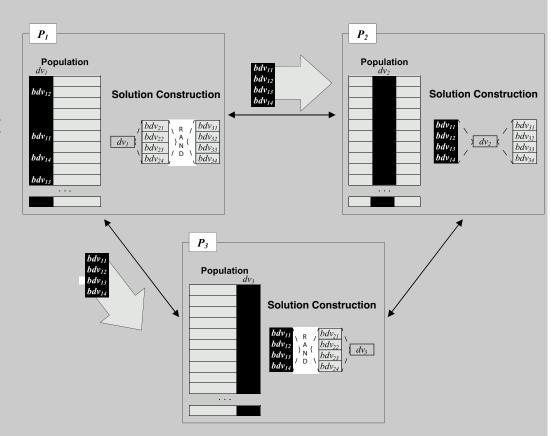
- Non-dominated Sorting Genetic Algorithm [1]
- Most popular metaheuristic for multi-objective optimization



[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182{197, 2002.

CCNSGA-II

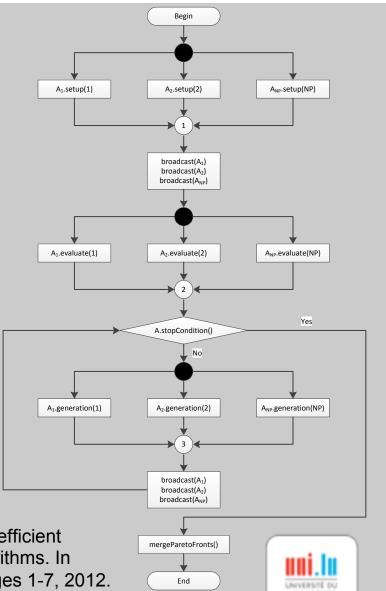
- Based on Potter Cooperative Coevolutionary EA [2]
- Subpopulations evaluate part of global solution vector
- Cooperate by exchanging local representatives



[2] M.A. Potter and K. De Jong. A cooperative coevolutionary approach to function optimization. In Parallel Problem Solving from Nature (PPSN III), pages 249-257. Springer, 1994

Parallel Asynchronous CCNSGA-II

- Good parallelization capabilities
 - Subpopulations evolve in parallel
- Asynchronous CCNSGA-II
 - Proposed in [3]
 - Only applied on MO test functions

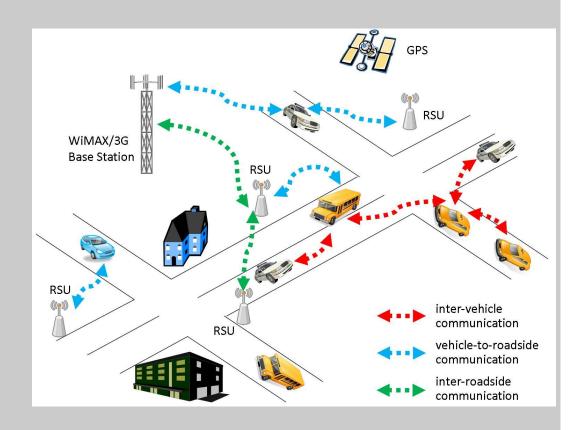


[3] S. Nielsen, B. Dorronsoro, G. Danoy, and P. Bouvry. Novel efficient asynchronous cooperative co-evolutionary multi-objective algorithms. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1-7, 2012.

- 1. Introduction
- 2. Asynchronous Parallel CCNSGA-II
- 3. Injection Network Problem
- 4. Experimental Setup
- 5. Numerical Results
- 6. Conclusion and Perspectives

Vehicular Ad hoc Networks (VANETs)

- Wireless ad hoc network
 - No central entity
 - Nodes act as routers
- Mobility induces topological changes
- Partitioning problem



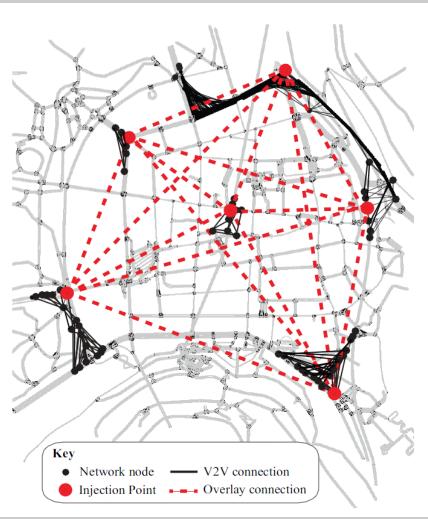
Injection Network

Hybrid VANETs

 Vehicle-to-Vehicle and vehicle-to-Infrastructure

Injection points

- Nodes connected to infrastructure
- Form fully-connected overlay network
- Rely on small-world properties
 - High CC: better broadcasting efficiency
 - Low APL: faster and easier to maintain routing



[4] J. Schleich, G. Danoy, B. Dorronsoro, and P. Bouvry. An overlay approach for optimising small-world properties in VANETs. In Applications of Evolutionary Computation, volume 7835 of Lecture Notes in Computer Science, pages 32-41. Springer Berlin Heidelberg, 2013.

Multi-objective Optimization Problem

$$f(s) = \begin{cases} min\{inj\} \\ max\{cc\}; \\ min\{apl_{diff}\} \end{cases}$$
 s. t. $component = 1$

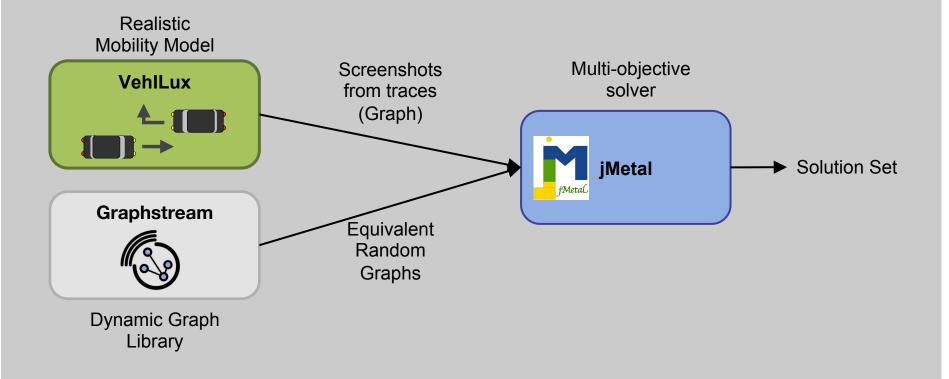
With
$$apl_{diff} = |apl - apl_{random}|$$

- Equivalent random graph
 - same number of nodes and average density
 - averaged over 30 different instances
- Generated using Watts rewiring process [5]
 - with randomness, i.e. p = 1

[5] Collective dynamics of small-world networks, D. J. Watts and S. H. Strogatz, Nature vol 393, 1998, pp 440-442

- 1. Introduction
- 2. Asynchronous Parallel CCNSGA-II
- 3. Injection Network Problem
- 4. Experimental Setup
- 5. Numerical Results
- 6. Conclusion and Perspectives

Experimental Setup



Experimental Setup - Algorithms configuration

- Configuration is the one originally suggested by the authors in [2]
- Solution encoding: binary array
 - 1 for injection point
 - 0 for normal node
 - length: number of devices (cars)

Numb. of subpop.*	4			
Cores used	4 (1 for NSGA-II)			
Number of threads	1 per subpopulation			
Population size	100			
Final archive size	100, from all subpops			
Migration policy *	20 random			
Max. evaluations	50,000			
Pop. initialisation	Random			
Selection	Binary tournament			
Recombination	DPX			
Probability	0.9			
Mutation	Bit Flip			
Probability	$rac{1}{number_of_variables}$			
Independent runs	30			
* Not applicable for NSGA-II				

[2] A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II, K. Deb and A. Pratap and S. Agarwal and T. Meyarivan, IEEE Trans. on Evol. Comp. vol 6 (2), 2002, pp 182-197

Experimental Setup - Network instances

VehILux mobility model [3]

- Realistic road network topology (OpenStreetMaps)
- Real traffic counting data from the Luxembourg Ministry of Transport

	Surface	$0.6 \ km^2$			
	Coverage radius	100 m			
•	Network Number	21900	22200	22500	
m.	Number of Nodes	40	62	60	
6 a	Partitions	10	8	6	
	Solution space size	1^{12}	4.61^{18}	1.15^{18}	
	Network Number	25500	25800	26099	
H.	Number of Nodes	223	248	301	
7 a	Partitions	10	6	7	
•	Solution space size	1.34^{67}	4.52^{74}	4.07^{90}	

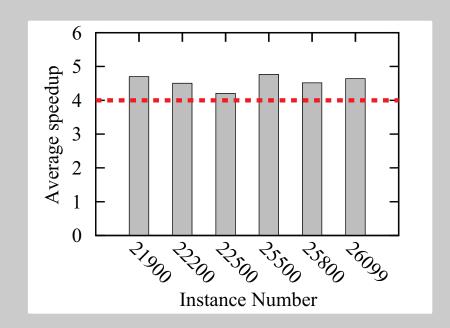
[3] A vehicular mobility model based on real traffic counting data, Y. Pigné and G. Danoy and P. Bouvry, ACM Int. Conf. on Communication Technologies for Vehicles, 2011, pp 131-142

- 1. Introduction
- 2. Asynchronous Parallel CCNSGA-II
- 3. Injection Network Problem
- 4. Experimental Setup
- 5. Numerical Results
- 6. Conclusion and Perspectives

Speedup

- HPC facility of the UL
 - Nodes HP Proliant
 - 2 Intel L5640 CPUs having 6 cores each at 2.26 GHz.
- Computation times
 - Increase drastically with the problem size
- Super-linear speedup
 - For all instances
 - Average: 4.55

Instance	NSGA-II	CCNSGA-II	Speedup
21900	569.62	121.18	4.70
22200	2159.40	479.35	4.50
22500	1892.97	450.23	4.20
25500	141387.52	29676.34	4.76
25800	192580.75	42622.23	4.52
26099	386924.15	83420.32	4.64



Solution quality

	SPREAD			EPSILON		
Instance	NSGA-II	CCNSGA-II	Conf.	NSGA-II	CCNSGA-II	Conf.
21900	$6.55e - 01_{4.5e - 02}$	$7.32e - 01_{7.9e - 02}$	A	$7.00e + 00_{0.0e+00}$	$1.67e + 00_{2.1e - 08}$	∇
22200	$6.85e - 01_{4.6e - 02}$	$7.70e - 01_{4.7e - 02}$	A	$3.00e + 00_{0.0e+00}$	$1.40e + 00_{7.0e-02}$	∇
22500	$7.25e - 01_{3.8e - 02}$	$7.44e - 01_{6.7e - 02}$	_	$4.00e + 00_{0.0e+00}$	$1.90e + 00_{2.9e - 02}$	∇
25500	$8.56e - 01_{1.1e-01}$	$7.41e - 01_{4.1e - 02}$	∇	$1.57e + 01_{4.3e+00}$	$2.93e + 00_{9.0e-01}$	∇
25800	$8.36e - 01_{7.2e-02}$	$7.49e - 01_{7.0e - 02}$	∇	$8.87e + 00_{4.1e+00}$	$3.14e + 00_{1.2e+00}$	∇
26099	$7.31e - 01_{1.1e - 01}$	$7.86e - 01_{5.2e - 02}$	A	$1.56e + 01_{6.7e+00}$	$4.00e + 00_{1.4e+00}$	∇

- SPREAD Diversity of solutions
 - NSGA-II better on half of the instances
- EPSILON Convergence
 - CCNSGA-II better on all instances

- 1. Introduction
- 2. Asynchronous Parallel CCNSGA-II
- 3. Injection Network Problem
- 4. Experimental Setup
- 5. Numerical Results
- 6. Conclusion and Perspectives

Conclusions and Perspectives

Conclusions

- First application of asynchronous parallel CCNSGA-II on RW problem
 - Injection Netwok in VANETs
- Analyzed performance of CCNSGA-II on realistic instances
 - Super linear speedup
 - Better convergence

Perspectives

- Analyze scalability of the parallel CCNSGA-II
- Develop decentralised heuristics
- Use CCMOEA empirical bounds to assess the heuristics performance

Thank you for your attention

Optimising Small-World Properties in VANETs with a Parallel Multi-Objective Coevolutionary Algorithm

<u>Grégoire Danoy</u>, Julien Schleich, Bernabé Dorronsoro and Pascal Bouvry gregoire.danoy@uni.lu

Small world Properties

Small Average Path Length (APL)

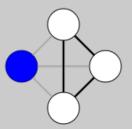
$$APL = \frac{1}{n(n-1)} \sum_{i,j} d(v_i, v_j)$$

- High Clustering Coefficient (CC)
 - Local

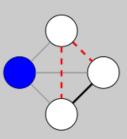
$$CC_v = \frac{|E(\Gamma_v)|}{k_v(k_v - 1)}$$

Global

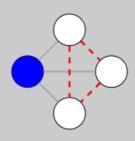
$$CC = \frac{1}{n} \sum_{v} CC_{v}$$



c = 1



c = 1/3

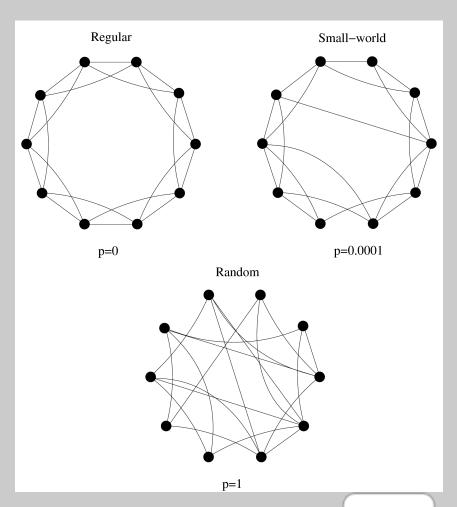


Small world Properties

Definition of Watts [1]

$$APL \approx APL_{random}$$

 $CC \gg CC_{random}$



[1] Collective dynamics of small-world networks, D. J. Watts and S. H. Strogatz, Nature vol 393, 1998, pp 440-442

Vehicular Ad hoc Networks (VANETs)

Problem 1: the network can be partitioned

There exists no path between some pair of nodes

Solution 1: injection points

- A subset of nodes use an additional network interface
- This subset of nodes forms a fully connected overlay network

Vehicular Ad hoc Networks (VANETs)

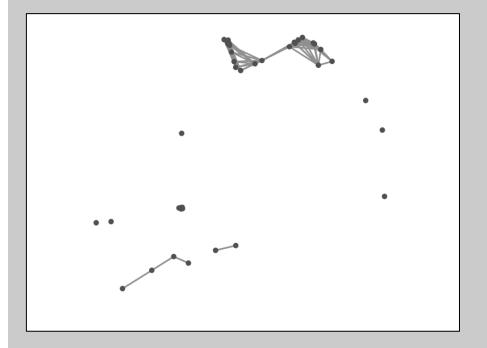
Problem 2: the topological properties are not optimal

Solution 2: select injection points in order to obtain better small world properties

- High CC: better broadcasting efficiency
- Low APL: faster and easier to maintain routing

Network Instances

Instance 21900



Instance 25800

