
VI Latin American Symposium on High-Performance Computing
HPCLatAm 2013

Hierarchical N-body algorithms for the Exascale era

Lorena A. Barba
Boston University & The George Washington University (from August 2013)

@LorenaABarba

http://lorenabarba.com/

http://lorenabarba.com
http://lorenabarba.com

Acknowledgements

NSF CAREER award

NVIDIA Academic Partnership Award
CUDA Fellow

ONR Applied Computational Analysis Program

Acknowledgement
joint work with Dr. Rio Yokota
here at Nagasaki Advanced Computing Center, Japan

A history lesson

p. 54 of the 2005 Report to the President of
the United States, President’s Information
Technology Advisory Committee, PITAC.

http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf

Fig. 5, p. 53 of Computational Science: Ensuring America’s Competitiveness (2005) Report to the President
of the United States, President’s Information Technology Advisory Committee, PITAC.

Algorithmic speedup

0 9 18 27 36

Moore’s Law

Gaussian
elimination

Gauss-Seidel

Optimal SOR

Conjugate
gradient

Full Multigrid

yearsearly 1960s

108

106

104

102

R
e

la
ti

ve
 s

p
e

e
d

-
u

p

Algorithms can often speed up science as much
or more than Moore’s law.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

O(N
3
)

O(N
2
)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

O(N
2
)

O(N
3
)

e curious story of conjugate gradient algorithms

Gauss ia
n e

l im
in

at io
n

CG i te ra t i ve m
ethods

‣ Iterative methods:

‣ sequence of iterates converging
to the solution

‣ CG matrix iterations bring the
O(N3) cost to O(N2)

‣ 1950s — N too small for CG to
be competitive

‣ 1970s — renewed attention

“... the fundamental law of computer science
[is]: the faster the computer, the greater the
importance of speed of algorithms”

Trefethen & Bau “Numerical Linear Algebra” SIAM

‣ 1946 — The Monte Carlo method.

‣ 1947 — Simplex Method for Linear Programming.

‣ 1950 — Krylov Subspace Iteration Method.

‣ 1951 — The Decompositional Approach to Matrix Computations.

‣ 1957 — The Fortran Compiler.

‣ 1959 — QR Algorithm for Computing Eigenvalues.

‣ 1962 — Quicksort Algorithms for Sorting.

‣ 1965 — Fast Fourier Transform.

‣ 1977 — Integer Relation Detection.

‣ 1987 — Fast Multipole Method Dongarra& Sullivan, IEEE Comput. Sci. Eng.,
Vol. 2(1):22-- 23 (2000)

Hierarchichal N-body algorithms

N-body

‣ Problem:
“updates to a system where each element of the system rigorously
depends on the state of every other element of the system.“

http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods

http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods
http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods

Credit: Mark Stock

M31 Andromeda galaxy
stars: 1012

Fast N-body method

stars of the Andromeda galaxy

Earth

O(N)

M2M
multipole to multipole
treecode & FMM

M2L
multipole to local
FMM

L2L
local to local
FMM

L2P
local to particle
FMM

P2P
particle to particle
treecode & FMM

M2P
multipole to particle
treecode

source particles
target particles

information moves from red to blue

P2M
particle to multipole
treecode & FMM

Image: “Treecode and fast multipole method for N-body simulation with CUDA”, Rio Yokota, Lorena A Barba, Ch.
9 in GPU Computing Gems Emerald Edition, Wen-mei Hwu, ed.; Morgan Kaufmann/Elsevier (2011) pp. 113–132.

http://www.elsevierdirect.com/product.jsp?isbn=9780123849885
http://www.elsevierdirect.com/product.jsp?isbn=9780123849885

x x

M2L

root

level 1

M2L

P2M L2P

L2L

leaf level

M2M

“A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio
Yokota, L A Barba. Int. J. High-perf. Comput. 26(4):337–346 (November 2012)

- reduces operation count from O(N2) to O(N log N) or O(N)

Treecode & Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N]

root

level 1

leaf level

“A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio
Yokota, L A Barba. Int. J. High-perf. Comput. 26(4):337–346 (November 2012)

N-body simulation on GPU hardware:
e algorithmic and hardware speed-ups multiply.

Early application of GPUs

‣ 2007, Hamada & Iitaka — CUNbody

๏ distributed source particles among thread blocks, requiring reduction

‣ 2007, Nyland et al. — GPU Gems 3

๏ target particles were distributed, no reduction necessary

‣ 2008, Belleman et al. — ‘Kirin’ code

‣ 2009, Gaburov et al. — ‘Sapporo’ code

These are all
Direct Summation
--- double check

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

N

ti
m
e
[s
]

Direct (CPU)
Direct (GPU)
FMM (CPU)
FMM (GPU)

FMM on GPU: multiplying speed-ups

“Treecode and fast multipole method for N-body simulation with CUDA”, R Yokota & L A Barba,
Ch. 9 in GPU Computing Gems Emerald Edition, Elsevier/Morgan Kaufman (2011)

Note:

p=10

L2-norm error
(normalized):
10-4

200x

40x

Advantage of N-body algorithms on GPUs
‣ quantify using the Roofline Model

- shows hardware barriers (‘ceiling’) on a computational kernel

‣ Components of performance:

Communication

Computation

Locality

Performance: Computation

Metric:

๏ Gflop/s

๏ dp / sp

Peak achivable if:

๏ exploit FMA, etc.

๏ non-divergence (GPU)

‣ Intra-node parallelism:

๏ explicit in algorithm

๏ explicit in code

-

Communication

Computation

Locality

Source: ParLab, UC Berkeley

Performance: Communication

Metric:

๏ GB/s

Peak achivable if optimizations
are explicit

๏ prefetching

๏ allocation/usage

๏ stride streams

๏ coalescing on GPU

-

Communication

Computation

Locality

Source: ParLab, UC Berkeley

Performance: Locality

“Computation is free”

๏ Maximize locality > minimize communication

๏ Comm lower bound

-

Communication

Computation

Locality

Source: ParLab, UC Berkeley

Hardware aids
Optimizations via
software

๏ minimize capacity
misses

๏ cache size ๏ blocking

๏ minimize conflict misses ๏ associativities ๏ padding

Roofline model

‣ Operational intensity = total flop / total byte = Gflop/s / GB/s

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

16

32

64

128

256

512

1024

2048

Operational intensity (flop/byte)

A
tt

ai
na

b
le

 fl
op

/s
 (

G
flo

p
/s

)

no SFU, no FMA

+SFU
+FMA

single-precision peak

NVIDIA C2050

peak memory
performance

peak floating-point
performance

log/log scale

“Roofline: An Insightful Visual Performance Model for Multicore Architectures”,
S. Williams, A. Waterman, D. Patterson. Communictions of the ACM, April 2009.

Advantage of N-body algorithms on GPUs

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256

16

32

64

128

256

512

1024

2048

Operational intensity (flop/byte)

A
tt

ai
na

b
le

 fl
op

/s
 (

G
flo

p
/s

)

no SFU, no FMA

+SFU
+FMA

Fa
st

 N
-b

od
y

(p
ar

tic
le

-p
ar

tic
le

)

Fa
st

 N
-b

od
y

(c
el

l-c
el

l)

3-
D

 F
FT

St
en

ci
l

Sp
M

V

single-precision peak

“Hierarchical N-body simulations with auto-tuning for heterogeneous systems”, Rio
Yokota, L A Barba. IEEE Computing in Science and Engineering, 3 January 2012

Computing in Science and Engineering (CiSE), 3 January 2012, IEEE Computer Society,
doi:10.1109/MCSE.2012.1.
Preprint arXiv:1108.5815

http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://arxiv.org/abs/1108.5815
http://arxiv.org/abs/1108.5815

Scalability of FMM
in many-GPUs & many-CPU systems

Scalability of FMM

Our own progress so far:

1) 1 billion points on 512 GPUs (Degima)
2) 32 billion on 32,768 processors of Kraken
3) 69 billion on 4096 GPUs of Tsubame 2.0

achieved 1 petaflop/s on turbulence simulation

http://www.bu.edu/exafmm/

meshcharges

Demo: Lysozyme molecule

discretized with 102,486 boundary elements

largest calculation:

๏ 10,648 molecules
๏ each discretized with 102,486 boundary elements
๏ more than 20 million atoms
๏ 1 billion unknowns

⟶ one minute per iteration on 512 GPUs of Degima

1000 lysozyme
molecules

Degima cluster
Nagasaki Advanced Computing Center

Kraken

Cray XT5 system at NICS, Tennessee:
9,408 nodes with 12 CPU cores each,
16 GB memory

peak performance is 1.17 Petaflop/s.
11 in Top500 (Jun’11 & Nov’11)

Weak scaling on Kraken

1 8 64 512 4096 327680

10

20

30

40

Nprocs

tim
e

[s
]

tree construction
mpisendp2p
mpisendm2l
P2Pkernel
P2Mkernel
M2Mkernel
M2Lkernel
L2Lkernel
L2Pkernel

p=3
N=106, per process

parallel efficiency
72% at 32,768

processors

largest run:

32 Billion points

time to solution:

<40 s

Tsubame 2.0

1408 nodes with 12 CPU cores each,
3 nvidia M2050 GPUs,
54 GB of RAM.

Total of 4224 GPUs
peak performance 2.4 Petaflop/s.
5 in Top500 (Jun’11 & Nov’11)

Weak scaling on Tsubame

‣ 4 million points per process

4 32 256 2048
0

5

10

15

20

25

30

Number of processes (GPUs)

Ti
m

e (
se

c)

Local evaluation
FMM evaluation
MPI communication
GPU communication
Tree construction

~9 billion points,
30s on 2048 GPUs

FMM vs. FFT, weak scaling

1 8 64 512 4096
0

0.2

0.4

0.6

0.8

1

1.2

Number of processes

Pa
ra

lle
l e

ffi
ci

en
cy

FMM
spectral method

Petascale turbulence simulation

‣ using vortex method

‣ 4,0963 grid, 69 billion points

‣ 1 Pflop/s

‣ Energy spectrum well-matched

100 101 102

10ï�

100

k

E(
k)

spectral method
vortex method

14 Gordon Bell awards for N-body

Gordon Bell awards for N-body
‣ Performance 1992 — Warren & Salmon, 5 Gflop/s

๏ Price/performance 1997 — Warren et al., 18 Gflop/s / $1 M

๏ Price/performance 2009 — Hamada et al., 124 Mflop/s / $1

‣ Performance 2010 — Rahimian et al., 0.7 Pflop/s on Jaguar

6200x
cheaper

34x more than
Moore’s law

‣ largest simulation — 90 billion unknowns

‣ scale — 256 GPUs of Lincoln cluster / 196,608 cores of Jaguar

‣ numerical engine: FMM (kernel-independent version, ‘kifmm’)

(a) (b) (c) (d) (e) (f)

Fig. 1: SUMMARY OF THE COMPUTATIONAL INFRASTRUCTURE FOR DIRECT NUMERICAL SIMULATION OF BLOOD FLOW. In the top row, we
depict a few snapshots from the flow of twenty RBCs that are immersed in plasma (which is not visualized). At every time step, a Stokes problem
must be solved in the exterior and interior of the RBCs. This is quite challenging, first, because of the complex geometries and second because
the Stokes equations require implicit solvers. We have developed computational tools for the efficient direct numerical simulation of blood
using a boundary integral formulation that addresses some of the numerical approximation issues. The main algorithmic components include:
(a) spectral RBC shape representations and quadratures for singular integrals on these shapes; (b) accurate modeling of the hydrodynamic
interactions between many-RBCs; (c) nonlinear solvers for the mechanics of RBC deformations; and (d,e) parallel, kernel-independent, tree-
based, fast summation methods. The advantage of boundary integral methods is that only the RBC boundary is discretized and no discretization
of the space between RBCs is necessary. This is crucial for reducing the number of degrees of freedom and eliminates the need for difficult-
to-parallelize 3D unstructured mesh generation. Our tools enable parallel and highly accurate simulations of microcirculation phenomena of
blood flow. We have achieved the direct numerical simulation of O(50) microliters of blood flow. ((f) One can think of the volume of a single
blood drop as being roughly equivalent to one microliter.)

sacs with an inextensible, massless membrane that can sustain
bending and tension forces. The surrounding plasma is modeled
as a Stokesian fluid (we neglect inertial terms). There are several
challenges in simulating such a system:

• The evolution of the RBCs requires solving the Stokes
equations in the plasma—a very complex geometric region
that changes at every time step.

• Computing the bending and tension forces requires ac-
curate geometric description of the shape of the RBCs.
Furthermore, these forces introduce numerical stiffness.

To address these challenges associated with the direct numer-
ical simulation of blood flow, we use

• an integro-differential formulation in which we couple a
boundary integral formulation for the Stokes equations
(plasma) with the RBC’s membrane elasticity;

• a semi-implicit time-stepping scheme that removes the
stiffness due to interfacial forces;

• spherical harmonics representations for the shape and the
deformation of RBCs;

• the fast multipole method to accelerate the long-range
hydrodynamic interactions between cells and plasma; and

• distributed and shared memory parallelism, SIMD paral-
lelism (vectorization), and fine-grained multithreading via
GPGPU acceleration, to expose maximum concurrency.

MOBO employs Fourier and Legendre transforms, adaptive fast

multipole methods, Galerkin projections, multi-step time march-
ing, fast spherical harmonics rotations, spectral quadratures for
smooth and weakly singular integrals, preconditioned Krylov
linear solvers, and dense linear algebra.

Our overall formulation can be outlined as follows. We use
a spherical harmonics representation for the boundary of every
RBC. This choice is mathematically equivalent to tracking a
number of points on the surface of the RBC. In our simulations,
we typically track either 84 or 312 points. The motion of each
such point x is governed by

∂x

∂t
= v(x),

v(x) = vlocal(x) + vglobal(x) + vbackground(x).
(1)

Here, v is the velocity of the point, which we decompose
into three components: local, global, and background velocities.
Roughly speaking, the “local” velocity, vlocal , accounts for
the interactions between the specific point in the RBC under
consideration and all of the other points within the same RBC.
The “global” velocity, vglobal , accounts for all of the interactions
occurring across all of the RBCs in the simulation. The “back-
ground” velocity, vbackground , is the imposed flow field. This
work builds on our previous work on massively parallel tree-
data structures [30], [27], parallel and kernel independent fast
multipole methods [36], [17], [7], and fast solvers for particulate
flows [33], [25], [34].

2

How will FMM fare in exascale?

Pressure from hardware

‣ Overall byte-to-flop ratios —machine balance— are declining

‣ Machine balance is converging

Features of FMM for exascale

‣ The tree data structure extracts data locality from nonuniform and
multi-scale resolutions;

‣ benign synchronization requirements;

‣ some kernels are purely local

‣ hierarchichal communication pattern

➡ The FMM is not a locality-sensitive application

In the sense of: Bergman et al. (2008) “Exascale Computing Study”, DARPA IPTO

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
8

16

32

64

128

256

512

1024

2048

Operational intensity (flop/byte)

D
o

u
b

le
 p

re
c
is

io
n

 p
e

rf
o

rm
a

n
c
e

 (
G

fl
o

p
/s

)

F
M

M
 P

2
P

D
G

E
M

M

F
M

M
 M

2
L

 (
C

a
rt

e
s
ia

n
)

F
M

M
 M

2
L

 (
S

p
h

e
ri
c
a

l)

3
D

 F
F

T

S
te

n
c
il

S
p

M
V

Intel Sandy Bridge

AMD Abu Dhabi

IBM BG/Q

Fujitsu FX10

NVIDIA Kepler

Intel Xeon Phi

