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A history lesson



p. 54 of the 2005 Report to the President of 
the United States, President’s Information 
Technology Advisory Committee, PITAC.

http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf


Fig. 5, p. 53 of Computational Science: Ensuring America’s Competitiveness (2005) Report to the President 
of the United States, President’s Information Technology Advisory Committee, PITAC.
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Algorithms can often speed up science as much 
or more than Moore’s law.
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e curious story of conjugate gradient algorithms

Gauss ia
n  e

l im
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CG i te ra t i ve  m
ethods

‣ Iterative methods:

‣ sequence of iterates converging 
to the solution

‣ CG matrix iterations bring the 
O(N3) cost to O(N2)

‣ 1950s — N too small for CG to 
be competitive

‣ 1970s — renewed attention



“... the fundamental law of computer science 
[is]: the faster the computer, the greater the 
importance of speed of algorithms”

Trefethen & Bau “Numerical Linear Algebra” SIAM



‣ 1946 — The Monte Carlo method.

‣ 1947 — Simplex Method for Linear Programming.

‣ 1950 — Krylov Subspace Iteration Method.

‣ 1951 — The Decompositional Approach to Matrix Computations.

‣ 1957 — The Fortran Compiler.

‣ 1959 — QR Algorithm for Computing Eigenvalues.

‣ 1962 — Quicksort Algorithms for Sorting.

‣ 1965 — Fast Fourier Transform.

‣ 1977 — Integer Relation Detection.

‣ 1987 — Fast Multipole Method Dongarra& Sullivan, IEEE Comput. Sci. Eng.,
Vol. 2(1):22-- 23 ( 2000)



Hierarchichal N-body algorithms



N-body

‣ Problem:
“updates to a system where each element of the system rigorously 
depends on the state of every other element of the system.“

http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods

http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods
http://parlab.eecs.berkeley.edu/wiki/patterns/n-body_methods


Credit: Mark Stock



M31 Andromeda galaxy 
# stars: 1012





Fast N-body method

stars of the Andromeda galaxy 

Earth

O(N)



M2M
multipole to multipole
treecode & FMM

M2L
multipole to local
FMM

L2L
local to local
FMM

L2P
local to particle
FMM

P2P
particle to particle
treecode & FMM

M2P
multipole to particle
treecode

source particles
target particles

information moves from red to blue

P2M
particle to multipole
treecode & FMM

Image: “Treecode and fast multipole method for N-body simulation with CUDA”,  Rio Yokota, Lorena A Barba, Ch. 
9 in GPU Computing Gems Emerald Edition, Wen-mei Hwu, ed.; Morgan Kaufmann/Elsevier (2011) pp. 113–132.

http://www.elsevierdirect.com/product.jsp?isbn=9780123849885
http://www.elsevierdirect.com/product.jsp?isbn=9780123849885
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“A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio 
Yokota, L A Barba. Int. J. High-perf. Comput. 26(4):337–346 (November 2012)



- reduces operation count from O(N2) to O(N log N) or O(N)

Treecode & Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N ]

root

level 1

leaf level

“A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems”, Rio 
Yokota, L A Barba. Int. J. High-perf. Comput. 26(4):337–346 (November 2012)



N-body simulation on GPU hardware:
e algorithmic and hardware speed-ups multiply.



Early application of GPUs

‣ 2007, Hamada & Iitaka — CUNbody

๏ distributed source particles among thread blocks, requiring reduction

‣ 2007, Nyland et al. — GPU Gems 3

๏ target particles were distributed, no reduction necessary

‣ 2008, Belleman et al. — ‘Kirin’ code

‣ 2009, Gaburov et al. — ‘Sapporo’ code

These are all 
Direct Summation 
--- double check
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Direct  (CPU)
Direct  (GPU)
FMM  (CPU)
FMM  (GPU)

FMM on GPU: multiplying speed-ups

“Treecode and fast multipole method for N-body simulation with CUDA”, R Yokota & L A Barba, 
Ch. 9 in GPU Computing Gems Emerald Edition, Elsevier/Morgan Kaufman (2011)

Note:

p=10

L2-norm error 
(normalized):
10-4

200x

40x



Advantage of N-body algorithms on GPUs
‣ quantify using the Roofline Model

- shows hardware barriers (‘ceiling’) on a computational kernel

‣ Components of performance:

Communication

Computation

Locality



Performance:  Computation

Metric:

๏ Gflop/s

๏ dp / sp

Peak achivable if:

๏ exploit FMA, etc.

๏ non-divergence (GPU)

‣ Intra-node parallelism:

๏ explicit in algorithm

๏ explicit in code

-

Communication

Computation

Locality

Source: ParLab, UC Berkeley



Performance:  Communication

Metric:

๏ GB/s

Peak achivable if optimizations 
are explicit

๏ prefetching

๏ allocation/usage

๏ stride streams

๏ coalescing on GPU

-

Communication

Computation

Locality

Source: ParLab, UC Berkeley



Performance:  Locality

“Computation is free”

๏ Maximize locality > minimize communication

๏ Comm lower bound

-

Communication

Computation

Locality

Source: ParLab, UC Berkeley

Hardware aids
Optimizations via 
software

๏ minimize capacity 
misses

๏ cache size ๏ blocking

๏ minimize conflict misses ๏ associativities ๏ padding



Roofline model

‣ Operational intensity = total flop / total byte  = Gflop/s / GB/s
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Advantage of N-body algorithms on GPUs
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“Hierarchical N-body simulations with auto-tuning for heterogeneous systems”, Rio 
Yokota, L A Barba. IEEE Computing in Science and Engineering, 3 January 2012



Computing in Science and Engineering (CiSE), 3 January 2012, IEEE Computer Society, 
doi:10.1109/MCSE.2012.1.
Preprint arXiv:1108.5815

http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.1
http://arxiv.org/abs/1108.5815
http://arxiv.org/abs/1108.5815


Scalability of FMM 
in many-GPUs & many-CPU systems



Scalability of FMM

Our own progress so far:

1) 1 billion points on 512 GPUs (Degima)
2) 32 billion on 32,768 processors of Kraken
3) 69 billion on 4096 GPUs of Tsubame 2.0

achieved 1 petaflop/s on turbulence simulation

http://www.bu.edu/exafmm/





meshcharges

Demo: Lysozyme molecule

discretized with 102,486 boundary elements



largest calculation:

๏ 10,648 molecules
๏ each discretized with 102,486 boundary elements
๏ more than 20 million atoms
๏ 1 billion unknowns

⟶ one minute per iteration on 512 GPUs of Degima

1000 lysozyme 
molecules



Degima cluster
Nagasaki Advanced Computing Center



Kraken

Cray XT5 system at NICS, Tennessee:
9,408 nodes with 12 CPU cores each,
16 GB memory

peak performance is 1.17 Petaflop/s.
# 11 in Top500 (Jun’11 & Nov’11)



Weak scaling on Kraken
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P2Pkernel
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p=3
N=106, per process

parallel efficiency  
72% at 32,768 

processors

largest run:

32 Billion points

time to solution:

<40 s



Tsubame 2.0

1408 nodes with 12 CPU cores each,
3 nvidia M2050 GPUs, 
54 GB of RAM.

Total of 4224 GPUs
peak performance 2.4 Petaflop/s.
# 5 in Top500 (Jun’11 & Nov’11)



Weak scaling on Tsubame

‣ 4 million points per process
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FMM vs. FFT, weak scaling
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Petascale turbulence simulation

‣ using vortex method

‣ 4,0963 grid, 69 billion points

‣ 1 Pflop/s

‣ Energy spectrum well-matched
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14 Gordon Bell awards for N-body



Gordon Bell awards for N-body
‣ Performance 1992 — Warren & Salmon, 5 Gflop/s

๏ Price/performance 1997 — Warren et al., 18 Gflop/s / $1 M

๏ Price/performance 2009 — Hamada et al., 124 Mflop/s / $1

‣ Performance 2010 — Rahimian et al., 0.7 Pflop/s on Jaguar 

6200x 
cheaper

34x more than 
Moore’s law



‣ largest simulation — 90 billion unknowns

‣ scale — 256 GPUs of Lincoln cluster / 196,608 cores of Jaguar

‣ numerical engine: FMM (kernel-independent version, ‘kifmm’)

(a)                              (b)                               (c)                                              (d)                                      (e)                                        (f )         

Fig. 1: SUMMARY OF THE COMPUTATIONAL INFRASTRUCTURE FOR DIRECT NUMERICAL SIMULATION OF BLOOD FLOW. In the top row, we
depict a few snapshots from the flow of twenty RBCs that are immersed in plasma (which is not visualized). At every time step, a Stokes problem
must be solved in the exterior and interior of the RBCs. This is quite challenging, first, because of the complex geometries and second because
the Stokes equations require implicit solvers. We have developed computational tools for the efficient direct numerical simulation of blood
using a boundary integral formulation that addresses some of the numerical approximation issues. The main algorithmic components include:
(a) spectral RBC shape representations and quadratures for singular integrals on these shapes; (b) accurate modeling of the hydrodynamic
interactions between many-RBCs; (c) nonlinear solvers for the mechanics of RBC deformations; and (d,e) parallel, kernel-independent, tree-
based, fast summation methods. The advantage of boundary integral methods is that only the RBC boundary is discretized and no discretization
of the space between RBCs is necessary. This is crucial for reducing the number of degrees of freedom and eliminates the need for difficult-
to-parallelize 3D unstructured mesh generation. Our tools enable parallel and highly accurate simulations of microcirculation phenomena of
blood flow. We have achieved the direct numerical simulation of O(50) microliters of blood flow. ( (f) One can think of the volume of a single
blood drop as being roughly equivalent to one microliter.)

sacs with an inextensible, massless membrane that can sustain
bending and tension forces. The surrounding plasma is modeled
as a Stokesian fluid (we neglect inertial terms). There are several
challenges in simulating such a system:

• The evolution of the RBCs requires solving the Stokes
equations in the plasma—a very complex geometric region
that changes at every time step.

• Computing the bending and tension forces requires ac-
curate geometric description of the shape of the RBCs.
Furthermore, these forces introduce numerical stiffness.

To address these challenges associated with the direct numer-
ical simulation of blood flow, we use

• an integro-differential formulation in which we couple a
boundary integral formulation for the Stokes equations
(plasma) with the RBC’s membrane elasticity;

• a semi-implicit time-stepping scheme that removes the
stiffness due to interfacial forces;

• spherical harmonics representations for the shape and the
deformation of RBCs;

• the fast multipole method to accelerate the long-range
hydrodynamic interactions between cells and plasma; and

• distributed and shared memory parallelism, SIMD paral-
lelism (vectorization), and fine-grained multithreading via
GPGPU acceleration, to expose maximum concurrency.

MOBO employs Fourier and Legendre transforms, adaptive fast

multipole methods, Galerkin projections, multi-step time march-
ing, fast spherical harmonics rotations, spectral quadratures for
smooth and weakly singular integrals, preconditioned Krylov
linear solvers, and dense linear algebra.

Our overall formulation can be outlined as follows. We use
a spherical harmonics representation for the boundary of every
RBC. This choice is mathematically equivalent to tracking a
number of points on the surface of the RBC. In our simulations,
we typically track either 84 or 312 points. The motion of each
such point x is governed by

∂x

∂t
= v(x),

v(x) = vlocal(x) + vglobal(x) + vbackground(x).
(1)

Here, v is the velocity of the point, which we decompose
into three components: local, global, and background velocities.
Roughly speaking, the “local” velocity, vlocal , accounts for
the interactions between the specific point in the RBC under
consideration and all of the other points within the same RBC.
The “global” velocity, vglobal , accounts for all of the interactions
occurring across all of the RBCs in the simulation. The “back-
ground” velocity, vbackground , is the imposed flow field. This
work builds on our previous work on massively parallel tree-
data structures [30], [27], parallel and kernel independent fast
multipole methods [36], [17], [7], and fast solvers for particulate
flows [33], [25], [34].

2



How will FMM fare in exascale?



Pressure from hardware

‣ Overall byte-to-flop ratios —machine balance— are declining

‣ Machine balance is converging



Features of FMM for exascale

‣ The tree data structure extracts data locality from nonuniform and 
multi-scale resolutions;

‣ benign synchronization requirements;

‣ some kernels are purely local

‣ hierarchichal communication pattern

➡ The FMM is not a locality-sensitive application

In the sense of: Bergman et al. (2008) “Exascale Computing Study”, DARPA IPTO
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